Menu Top
Latest Maths NCERT Books Solution
6th 7th 8th 9th 10th 11th 12th

Class 12th Chapters
1. Relations and Functions 2. Inverse Trigonometric Functions 3. Matrices
4. Determinants 5. Continuity and Differentiability 6. Application of Derivatives
7. Integrals 8. Application of Integrals 9. Differential Equations
10. Vector Algebra 11. Three Dimensional Geometry 12. Linear Programming
13. Probability

Content On This Page
Example 1 & 2 (Before Exercise 2.1) Exercise 2.1 Example 3 to 5 (Before Exercise 2.2)
Exercise 2.2 Example 6 - Miscellaneous Examples Miscellaneous Exercise on Chapter 2


Chapter 2 Inverse Trigonometric Functions

Welcome to the detailed solutions page for Chapter 2: Inverse Trigonometric Functions, a fascinating and essential chapter within the Class 12 Mathematics syllabus, as prescribed by the Latest NCERT (2024-25) textbook. This chapter builds upon your knowledge of trigonometry by exploring the inverse functions of sine, cosine, tangent, and their reciprocals. Understanding these inverse functions, their domains, ranges, and properties is crucial for calculus, integration, and solving various trigonometric equations. These solutions provide comprehensive, step-by-step guidance for all exercises, ensuring full alignment with the current rationalized syllabus.

Recall that for a function to have an inverse, it must be bijective (both one-one and onto). However, trigonometric functions like $\sin x$, $\cos x$, $\tan x$ are periodic and hence many-one over their natural domains (like $\mathbb{R}$ for $\sin x$ and $\cos x$). Therefore, to define their inverses, we must restrict their domains to intervals where they become bijective. This leads to the critical concept of Principal Value Branches. These solutions meticulously explain why this restriction is necessary and clearly define the specific domain and range for each inverse trigonometric function (ITF) to ensure a unique output (the principal value).

The definitions of the principal value branches are fundamental, and the solutions emphasize them consistently:

A primary skill developed through these solutions is finding the Principal Value of various inverse trigonometric expressions, such as $\sin^{-1}(\frac{1}{2})$, $\cos^{-1}(-\frac{\sqrt{3}}{2})$, or $\tan^{-1}(-1)$. The step-by-step procedures shown ensure that the calculated value strictly adheres to the defined range (principal value branch) of the respective function.

A significant portion of the chapter involves manipulating and simplifying complex expressions involving ITFs, as well as proving identities. The solutions demonstrate the strategic application of various essential Properties of Inverse Trigonometric Functions. Key properties covered include:

Solutions meticulously illustrate how to choose and apply these properties, often involving algebraic simplification or clever trigonometric substitutions, to arrive at the desired result or proof.

Finally, the chapter addresses solving equations involving inverse trigonometric functions. The solutions demonstrate techniques to manipulate these equations using the aforementioned properties, aiming to isolate the variable $x$. A crucial aspect emphasized is the need to verify potential solutions by ensuring they fall within the valid domain of the functions involved in the original equation. By diligently studying these detailed solutions, students can achieve a firm understanding of the definitions, domains, principal value branches, and graphs of inverse trigonometric functions, master the techniques for finding principal values, become proficient in simplifying expressions and proving identities using their diverse properties, and develop the ability to confidently solve equations involving these important functions.



Example 1 & 2 (Before Exercise 2.1)

Example 1: Find the principal value of sin–1 $\left( \frac{1}{\sqrt{2}} \right)$

Answer:

Let $y = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

This means $\sin y = \frac{1}{\sqrt{2}}$.


We know that $\sin \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

So, we have $\sin y = \sin \left(\frac{\pi}{4}\right)$.


The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We need to find a value of $y$ in this interval such that $\sin y = \frac{1}{\sqrt{2}}$.


The angle $\frac{\pi}{4}$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

$\frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$


Therefore, the principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is $\frac{\pi}{4}$.

Example 2: Find the principal value of cot–1 $\left( \frac{-1}{\sqrt{3}} \right)$

Answer:

Let $y = \cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$.

By the definition of inverse trigonometric functions, this means:

$\cot y = -\frac{1}{\sqrt{3}}$

... (i)


We know that $\cot \left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{3}}$.

Since $\cot y$ is negative, $y$ must lie in the second quadrant, as the principal value branch of $\cot^{-1}x$ is $(0, \pi)$.


We use the identity $\cot(\pi - \theta) = -\cot \theta$.

Using this identity in equation (i):

$\cot y = -\cot\left(\frac{\pi}{3}\right)$

$\cot y = \cot\left(\pi - \frac{\pi}{3}\right)$

$\cot y = \cot\left(\frac{3\pi - \pi}{3}\right)$

$\cot y = \cot\left(\frac{2\pi}{3}\right)$


The principal value branch of $\cot^{-1}x$ is $(0, \pi)$.

We need to find a value of $y$ in this interval such that $\cot y = -\frac{1}{\sqrt{3}}$.


The angle $\frac{2\pi}{3}$ lies in the interval $(0, \pi)$.

$\frac{2\pi}{3} \in (0, \pi)$


Therefore, the principal value of $\cot^{-1}\left(-\frac{1}{\sqrt{3}}\right)$ is $\frac{2\pi}{3}$.



Exercise 2.1

Find the principal values of the following:

Question 1. sin-1 $\left( -\frac{1}{2} \right)$

Answer:

Let $y = \sin^{-1}\left(-\frac{1}{2}\right)$.

By the definition of inverse trigonometric functions, this means:

$\sin y = -\frac{1}{2}$.


We know that $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.

The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

For $x \in [-1, 1]$, the value of $\sin^{-1}x$ is such that $\sin(\sin^{-1}x) = x$ and $-\frac{\pi}{2} \leq \sin^{-1}x \leq \frac{\pi}{2}$.


Since $\sin y$ is negative, $y$ must be in the interval $[-\frac{\pi}{2}, 0]$.

We know that $\sin(-\theta) = -\sin\theta$.

So, $\sin y = -\sin\left(\frac{\pi}{6}\right)$.

$\sin y = \sin\left(-\frac{\pi}{6}\right)$.


The angle $-\frac{\pi}{6}$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

$-\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$


Therefore, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

Question 2. cos-1 $\left( \frac{\sqrt{3}}{2} \right)$

Answer:

Let $y = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

By the definition of inverse trigonometric functions, this means:

$\cos y = \frac{\sqrt{3}}{2}$.


We know that $\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

The principal value branch of $\cos^{-1}x$ is $[0, \pi]$.

For $x \in [-1, 1]$, the value of $\cos^{-1}x$ is such that $\cos(\cos^{-1}x) = x$ and $0 \leq \cos^{-1}x \leq \pi$.


We need to find a value of $y$ in the interval $[0, \pi]$ such that $\cos y = \frac{\sqrt{3}}{2}$.

The angle $\frac{\pi}{6}$ satisfies $\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.


The angle $\frac{\pi}{6}$ lies in the interval $[0, \pi]$.

$\frac{\pi}{6} \in [0, \pi]$


Therefore, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Question 3. cosec-1 (2)

Answer:

Let $y = \text{cosec}^{-1}(2)$.

By the definition of inverse trigonometric functions, this means:

$\text{cosec } y = 2$.


We know that $\text{cosec } y = \frac{1}{\sin y}$.

So, $\frac{1}{\sin y} = 2$, which implies:

$\sin y = \frac{1}{2}$.


We know that $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.

The principal value branch of $\text{cosec}^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.

For $x \in \mathbb{R} - (-1, 1)$, the value of $\text{cosec}^{-1}x$ is such that $\text{cosec}(\text{cosec}^{-1}x) = x$ and $-\frac{\pi}{2} \leq \text{cosec}^{-1}x \leq \frac{\pi}{2}$, $\text{cosec}^{-1}x \neq 0$.


We need to find a value of $y$ in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$ such that $\sin y = \frac{1}{2}$.

The angle $\frac{\pi}{6}$ satisfies $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.


The angle $\frac{\pi}{6}$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.

$\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$


Therefore, the principal value of $\text{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.

Question 4. tan-1 $(-\sqrt{3})$

Answer:

Let $y = \tan^{-1}(-\sqrt{3})$.

By the definition of inverse trigonometric functions, this means:

$\tan y = -\sqrt{3}$.


We know that $\tan \left(\frac{\pi}{3}\right) = \sqrt{3}$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

For $x \in \mathbb{R}$, the value of $\tan^{-1}x$ is such that $\tan(\tan^{-1}x) = x$ and $-\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$.


Since $\tan y$ is negative, $y$ must be in the interval $(-\frac{\pi}{2}, 0)$.

We know that $\tan(-\theta) = -\tan\theta$.

So, $\tan y = -\tan\left(\frac{\pi}{3}\right)$.

$\tan y = \tan\left(-\frac{\pi}{3}\right)$.


The angle $-\frac{\pi}{3}$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

$-\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$


Therefore, the principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.

Question 5. cos-1 $\left( -\frac{1}{2} \right)$

Answer:

Let $y = \cos^{-1}\left(-\frac{1}{2}\right)$.

By the definition of inverse trigonometric functions, this means:

$\cos y = -\frac{1}{2}$

... (i)


We know that $\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}$.

The principal value branch of $\cos^{-1}x$ is $[0, \pi]$.

For $x \in [-1, 1]$, the value of $\cos^{-1}x$ is such that $\cos(\cos^{-1}x) = x$ and $0 \leq \cos^{-1}x \leq \pi$.


Since $\cos y$ is negative, $y$ must lie in the second quadrant within the principal value branch $[0, \pi]$.

We use the identity $\cos(\pi - \theta) = -\cos \theta$.

Using this identity with the reference angle $\frac{\pi}{3}$ in equation (i):

$\cos y = -\cos\left(\frac{\pi}{3}\right)$

$\cos y = \cos\left(\pi - \frac{\pi}{3}\right)$

$\cos y = \cos\left(\frac{3\pi - \pi}{3}\right)$

$\cos y = \cos\left(\frac{2\pi}{3}\right)$


The angle $\frac{2\pi}{3}$ lies in the principal value branch $[0, \pi]$.

$\frac{2\pi}{3} \in [0, \pi]$


Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

Question 6. tan-1 (-1)

Answer:

Let $y = \tan^{-1}(-1)$.

By the definition of inverse trigonometric functions, this means:

$\tan y = -1$.


We know that $\tan \left(\frac{\pi}{4}\right) = 1$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

For $x \in \mathbb{R}$, the value of $\tan^{-1}x$ is such that $\tan(\tan^{-1}x) = x$ and $-\frac{\pi}{2} < \tan^{-1}x < \frac{\pi}{2}$.


Since $\tan y$ is negative, $y$ must be in the interval $(-\frac{\pi}{2}, 0)$.

We know that $\tan(-\theta) = -\tan\theta$.

So, $\tan y = -\tan\left(\frac{\pi}{4}\right)$.

$\tan y = \tan\left(-\frac{\pi}{4}\right)$.


The angle $-\frac{\pi}{4}$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

$-\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$


Therefore, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.

Question 7. sec-1 $\left( \frac{2}{\sqrt{3}} \right)$

Answer:

Let $y = \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

By the definition of inverse trigonometric functions, this means:

$\sec y = \frac{2}{\sqrt{3}}$.


We know that $\sec y = \frac{1}{\cos y}$.

So, $\frac{1}{\cos y} = \frac{2}{\sqrt{3}}$, which implies:

$\cos y = \frac{\sqrt{3}}{2}$.


We know that $\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

The principal value branch of $\sec^{-1}x$ is $[0, \pi] - \{\frac{\pi}{2}\}$.

For $x \in \mathbb{R} - (-1, 1)$, the value of $\sec^{-1}x$ is such that $\sec(\sec^{-1}x) = x$ and $0 \leq \sec^{-1}x \leq \pi$, $\sec^{-1}x \neq \frac{\pi}{2}$.


We need to find a value of $y$ in the interval $[0, \pi] - \{\frac{\pi}{2}\}$ such that $\cos y = \frac{\sqrt{3}}{2}$.

The angle $\frac{\pi}{6}$ satisfies $\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$, and therefore $\sec \left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}}$.


The angle $\frac{\pi}{6}$ lies in the interval $[0, \pi] - \{\frac{\pi}{2}\}$.

$\frac{\pi}{6} \in \left[0, \pi\right] - \left\{\frac{\pi}{2}\right\}$


Therefore, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.

Question 8. cot-1($\sqrt{3}$)

Answer:

Let $y = \cot^{-1}(\sqrt{3})$.

By the definition of inverse trigonometric functions, this means:

$\cot y = \sqrt{3}$.


We know that $\cot \left(\frac{\pi}{6}\right) = \sqrt{3}$.

The principal value branch of $\cot^{-1}x$ is $(0, \pi)$.

For $x \in \mathbb{R}$, the value of $\cot^{-1}x$ is such that $\cot(\cot^{-1}x) = x$ and $0 < \cot^{-1}x < \pi$.


We need to find a value of $y$ in the interval $(0, \pi)$ such that $\cot y = \sqrt{3}$.

The angle $\frac{\pi}{6}$ satisfies $\cot \left(\frac{\pi}{6}\right) = \sqrt{3}$.


The angle $\frac{\pi}{6}$ lies in the interval $(0, \pi)$.

$\frac{\pi}{6} \in (0, \pi)$


Therefore, the principal value of $\cot^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.

Question 9. cos-1 $\left( -\frac{1}{\sqrt{2}} \right)$

Answer:

Let $y = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

By the definition of inverse trigonometric functions, this means:

$\cos y = -\frac{1}{\sqrt{2}}$

... (i)


We know that $\cos \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

The principal value branch of $\cos^{-1}x$ is $[0, \pi]$.

For $x \in [-1, 1]$, the value of $\cos^{-1}x$ is such that $\cos(\cos^{-1}x) = x$ and $0 \leq \cos^{-1}x \leq \pi$.


Since $\cos y$ is negative, $y$ must lie in the second quadrant within the principal value branch $[0, \pi]$.

We use the identity $\cos(\pi - \theta) = -\cos \theta$.

Using this identity with the reference angle $\frac{\pi}{4}$ in equation (i):

$\cos y = -\cos\left(\frac{\pi}{4}\right)$

$\cos y = \cos\left(\pi - \frac{\pi}{4}\right)$

$\cos y = \cos\left(\frac{4\pi - \pi}{4}\right)$

$\cos y = \cos\left(\frac{3\pi}{4}\right)$


The angle $\frac{3\pi}{4}$ lies in the principal value branch $[0, \pi]$.

$\frac{3\pi}{4} \in [0, \pi]$


Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.

Question 10. cosec-1 $(-\sqrt{2})$

Answer:

Let $y = \text{cosec}^{-1}(-\sqrt{2})$.

By the definition of inverse trigonometric functions, this means:

$\text{cosec } y = -\sqrt{2}$.


We know that $\text{cosec } y = \frac{1}{\sin y}$.

So, $\frac{1}{\sin y} = -\sqrt{2}$, which implies:

$\sin y = -\frac{1}{\sqrt{2}}$.


We know that $\sin \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

The principal value branch of $\text{cosec}^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.

For $x \in \mathbb{R} - (-1, 1)$, the value of $\text{cosec}^{-1}x$ is such that $\text{cosec}(\text{cosec}^{-1}x) = x$ and $-\frac{\pi}{2} \leq \text{cosec}^{-1}x \leq \frac{\pi}{2}$, $\text{cosec}^{-1}x \neq 0$.


We need to find a value of $y$ in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$ such that $\sin y = -\frac{1}{\sqrt{2}}$.

Since $\sin y$ is negative, $y$ must be in the interval $[-\frac{\pi}{2}, 0)$.

We know that $\sin(-\theta) = -\sin\theta$.

So, $\sin y = -\sin\left(\frac{\pi}{4}\right)$.

$\sin y = \sin\left(-\frac{\pi}{4}\right)$.


The angle $-\frac{\pi}{4}$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.

$-\frac{\pi}{4} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$


Therefore, the principal value of $\text{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.

Find the values of the following:

Question 11. tan-1(1) + cos-1 $\left( -\frac{1}{2} \right)$ + sin-1 $\left( -\frac{1}{2} \right)$

Answer:

We need to find the value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$.

We will find the principal value of each term separately.


Let $y_1 = \tan^{-1}(1)$.

This means $\tan y_1 = 1$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

We know that $\tan \left(\frac{\pi}{4}\right) = 1$.

Since $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the principal value of $\tan^{-1}(1)$ is $\frac{\pi}{4}$.

$\tan^{-1}(1) = \frac{\pi}{4}$

... (i)


Let $y_2 = \cos^{-1}\left(-\frac{1}{2}\right)$.

This means $\cos y_2 = -\frac{1}{2}$.

The principal value branch of $\cos^{-1}x$ is $[0, \pi]$.

We know that $\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}$.

Since $\cos y_2$ is negative, $y_2$ is in the second quadrant within the principal value branch.

Using the identity $\cos(\pi - \theta) = -\cos \theta$:

$\cos y_2 = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

Since $\frac{2\pi}{3} \in [0, \pi]$, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.

$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$

... (ii)


Let $y_3 = \sin^{-1}\left(-\frac{1}{2}\right)$.

This means $\sin y_3 = -\frac{1}{2}$.

The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We know that $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Since $\sin y_3$ is negative, $y_3$ is in the interval $[-\frac{\pi}{2}, 0]$.

Using the identity $\sin(-\theta) = -\sin \theta$:

$\sin y_3 = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

Since $-\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.

$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$

... (iii)


Now, we add the principal values from (i), (ii), and (iii):

$\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{4} + \frac{2\pi}{3} + \left(-\frac{\pi}{6}\right)$

$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$

To add these fractions, find a common denominator, which is the LCM of 4, 3, and 6. The LCM is 12.

$= \frac{3 \times \pi}{3 \times 4} + \frac{4 \times 2\pi}{4 \times 3} - \frac{2 \times \pi}{2 \times 6}$

$= \frac{3\pi}{12} + \frac{8\pi}{12} - \frac{2\pi}{12}$

$= \frac{3\pi + 8\pi - 2\pi}{12}$

$= \frac{11\pi - 2\pi}{12}$

$= \frac{9\pi}{12}$

Simplify the fraction by dividing the numerator and denominator by their greatest common divisor, which is 3.

$= \frac{\cancel{9}^{3}\pi}{\cancel{12}_{4}}$

$= \frac{3\pi}{4}$


The value of the expression is $\frac{3\pi}{4}$.

Question 12. cos-1 $\left( \frac{1}{2} \right)$ + 2sin-1 $\left( \frac{1}{2} \right)$

Answer:

We need to find the value of $\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right)$.

We will find the principal value of each inverse trigonometric function separately.


Let $y_1 = \cos^{-1}\left(\frac{1}{2}\right)$.

This means $\cos y_1 = \frac{1}{2}$.

The principal value branch of $\cos^{-1}x$ is $[0, \pi]$.

We know that $\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}$.

Since $\frac{\pi}{3} \in [0, \pi]$, the principal value of $\cos^{-1}\left(\frac{1}{2}\right)$ is $\frac{\pi}{3}$.

$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$

... (i)


Let $y_2 = \sin^{-1}\left(\frac{1}{2}\right)$.

This means $\sin y_2 = \frac{1}{2}$.

The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We know that $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Since $\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, the principal value of $\sin^{-1}\left(\frac{1}{2}\right)$ is $\frac{\pi}{6}$.

$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$

... (ii)


Now, we substitute the principal values from (i) and (ii) into the given expression:

$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + 2 \times \frac{\pi}{6}$

$= \frac{\pi}{3} + \frac{2\pi}{6}$

Simplify the second term:

$= \frac{\pi}{3} + \frac{\cancel{2}^{1}\pi}{\cancel{6}_{3}}$

$= \frac{\pi}{3} + \frac{\pi}{3}$

Add the terms:

$= \frac{\pi + \pi}{3}$

$= \frac{2\pi}{3}$


The value of the expression is $\frac{2\pi}{3}$.

Question 13. If sin-1 x = y, then

(A) 0 ≤ y ≤ π

(B) $-\frac{\pi}{2}$ ≤ y ≤ $\frac{\pi}{2}$

(C) 0 < y < π

(D) $-\frac{\pi}{2}$ < y < $\frac{\pi}{2}$

Answer:

We are given that $\sin^{-1} x = y$.


The function $\sin^{-1}x$ is defined as the inverse of the sine function restricted to a specific interval to make it a bijection.

The principal value branch of the function $\sin^{-1}x$ has the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

This means that for any value of $x$ in the domain of $\sin^{-1}x$ (which is $[-1, 1]$), the principal value $y = \sin^{-1}x$ must lie within the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.


So, if $\sin^{-1} x = y$, then $y$ must satisfy the condition:

$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$


Comparing this condition with the given options:

(A) $0 \leq y \leq \pi$ (This is the range for $\cos^{-1}x$).

(B) $-\frac{\pi}{2}$ ≤ y ≤ $\frac{\pi}{2}$ (This is the principal value range for $\sin^{-1}x$).

(C) 0 < y < π (This is related to the range for $\cot^{-1}x$).

(D) $-\frac{\pi}{2}$ < y < $\frac{\pi}{2}$ (This is the range for $\tan^{-1}x$).


The correct option is (B).

Question 14. tan-1 $\sqrt{3}$ - sec-1 (-2) is equal to

(A) π

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

(D) $\frac{2\pi}{3}$

Answer:

We need to find the value of $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$.

We will find the principal value of each inverse trigonometric function separately.


Let $y_1 = \tan^{-1}(\sqrt{3})$.

This means $\tan y_1 = \sqrt{3}$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

We know that $\tan \left(\frac{\pi}{3}\right) = \sqrt{3}$.

Since $\frac{\pi}{3} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the principal value of $\tan^{-1}(\sqrt{3})$ is $\frac{\pi}{3}$.

$\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$

... (i)


Let $y_2 = \sec^{-1}(-2)$.

This means $\sec y_2 = -2$.

We know that $\sec y_2 = \frac{1}{\cos y_2}$. So, $\frac{1}{\cos y_2} = -2$, which implies $\cos y_2 = -\frac{1}{2}$.

The principal value branch of $\sec^{-1}x$ is $[0, \pi] - \{\frac{\pi}{2}\}$.

We know that $\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}$.

Since $\cos y_2$ is negative, $y_2$ must lie in the second quadrant within the principal value branch $[0, \pi]$.

Using the identity $\cos(\pi - \theta) = -\cos \theta$:

$\cos y_2 = -\cos\left(\frac{\pi}{3}\right) = \cos\left(\pi - \frac{\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right)$.

Since $\frac{2\pi}{3} \in [0, \pi] - \{\frac{\pi}{2}\}$, the principal value of $\sec^{-1}(-2)$ is $\frac{2\pi}{3}$.

$\sec^{-1}(-2) = \frac{2\pi}{3}$

... (ii)


Now, we substitute the principal values from (i) and (ii) into the given expression:

$\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3}$

Combine the terms:

$= \frac{\pi - 2\pi}{3}$

$= -\frac{\pi}{3}$


The value of the expression is $-\frac{\pi}{3}$.

Comparing this with the given options, the correct option is (B).



Example 3 to 5 (Before Exercise 2.2)

Example 3: Show that

(i) sin-1 $\left( 2x\sqrt{1-x^{2}} \right)$ = 2sin-1 x, $-\frac{1}{\sqrt{2}}$ ≤ x ≤ $\frac{1}{\sqrt{2}}$

(ii) sin-1 $\left( 2x\sqrt{1-x^{2}} \right)$ = 2 cos-1 x, $\frac{1}{\sqrt{2}}$ ≤ x ≤ 1

Answer:

Solution:


(i) To Show: $\sin^{-1} \left( 2x\sqrt{1-x^{2}} \right) = 2\sin^{-1} x$ for $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$.

Let $x = \sin \theta$.

Since $\sin^{-1} x = \theta$, and the principal value branch of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, $\theta$ lies in this interval.

The given condition on $x$ is $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$.

Substituting $x = \sin \theta$, we get $-\frac{1}{\sqrt{2}} \leq \sin \theta \leq \frac{1}{\sqrt{2}}$.

Since $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, this inequality implies:

$\sin \left(-\frac{\pi}{4}\right) \leq \sin \theta \leq \sin \left(\frac{\pi}{4}\right)$

$-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$


Now consider the expression inside $\sin^{-1}$ on the left side:

$2x\sqrt{1-x^{2}} = 2(\sin \theta)\sqrt{1-\sin^{2}\theta}$

$= 2\sin \theta \sqrt{\cos^{2}\theta}$

$= 2\sin \theta |\cos\theta|$

For $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$, $\cos \theta$ is non-negative, so $|\cos\theta| = \cos\theta$.

Thus, $2x\sqrt{1-x^{2}} = 2\sin \theta \cos\theta = \sin(2\theta)$.


Now the left side of the identity is $\sin^{-1}(\sin(2\theta))$.

For $\sin^{-1}(\sin \phi) = \phi$ to hold, $\phi$ must be in the principal value branch of $\sin^{-1}$, i.e., $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

In our case, $\phi = 2\theta$. From $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$, we have:

$-\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2}$

Since $2\theta$ lies in $[-\frac{\pi}{2}, \frac{\pi}{2}]$, we have $\sin^{-1}(\sin(2\theta)) = 2\theta$.


Substitute back $\theta = \sin^{-1} x$:

$\sin^{-1} \left( 2x\sqrt{1-x^{2}} \right) = 2\theta = 2\sin^{-1} x$.

This holds for $-\frac{1}{\sqrt{2}} \leq x \leq \frac{1}{\sqrt{2}}$.


(ii) To Show: $\sin^{-1} \left( 2x\sqrt{1-x^{2}} \right) = 2 \cos^{-1} x$ for $\frac{1}{\sqrt{2}} \leq x \leq 1$.

Let $x = \cos \theta$.

Since $\cos^{-1} x = \theta$, and the principal value branch of $\cos^{-1} x$ is $[0, \pi]$, $\theta$ lies in this interval.

The given condition on $x$ is $\frac{1}{\sqrt{2}} \leq x \leq 1$.

Substituting $x = \cos \theta$, we get $\frac{1}{\sqrt{2}} \leq \cos \theta \leq 1$.

Since $\theta \in [0, \pi]$, and cosine is decreasing on $[0, \pi]$, this inequality implies:

$\cos \left(\frac{\pi}{4}\right) \leq \cos \theta \leq \cos(0)$

$0 \leq \theta \leq \frac{\pi}{4}$


Now consider the expression inside $\sin^{-1}$ on the left side:

$2x\sqrt{1-x^{2}} = 2(\cos \theta)\sqrt{1-\cos^{2}\theta}$

$= 2\cos \theta \sqrt{\sin^{2}\theta}$

$= 2\cos \theta |\sin\theta|$

For $0 \leq \theta \leq \frac{\pi}{4}$, $\sin \theta$ is non-negative, so $|\sin\theta| = \sin\theta$.

Thus, $2x\sqrt{1-x^{2}} = 2\cos \theta \sin\theta = \sin(2\theta)$.


Now the left side of the identity is $\sin^{-1}(\sin(2\theta))$.

For $\sin^{-1}(\sin \phi) = \phi$ to hold, $\phi$ must be in the principal value branch of $\sin^{-1}$, i.e., $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

In our case, $\phi = 2\theta$. From $0 \leq \theta \leq \frac{\pi}{4}$, we have:

$0 \leq 2\theta \leq \frac{\pi}{2}$

Since $2\theta$ lies in $[0, \frac{\pi}{2}]$, which is a subset of $[-\frac{\pi}{2}, \frac{\pi}{2}]$, we have $\sin^{-1}(\sin(2\theta)) = 2\theta$.


Substitute back $\theta = \cos^{-1} x$:

$\sin^{-1} \left( 2x\sqrt{1-x^{2}} \right) = 2\theta = 2\cos^{-1} x$.

This holds for $\frac{1}{\sqrt{2}} \leq x \leq 1$.

Example 4: Express tan-1 $\left( \frac{cos \;x}{1-sin\; x} \right)$, $\frac{-3\pi}{2}$ < x < $\frac{\pi}{2}$ in the simplest form.

Answer:

Let the given expression be $y = \tan^{-1} \left( \frac{\cos x}{1-\sin x} \right)$.


We will simplify the argument of the $\tan^{-1}$ function using half-angle identities.

Recall the identities: $\cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$ and $1 = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)$ and $\sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$.

The argument is:

$\frac{\cos x}{1-\sin x} = \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) - 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}$

$= \frac{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)^2}$


The given range for $x$ is $-\frac{3\pi}{2} < x < \frac{\pi}{2}$.

Dividing by 2, we get $-\frac{3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}$.

In the interval $(-\frac{3\pi}{4}, \frac{\pi}{4})$, $\tan\left(\frac{x}{2}\right) \neq 1$. This implies $\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) \neq 0$.

So, we can cancel the term $\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)$ from the numerator and the denominator:

$\frac{\cos x}{1-\sin x} = \frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}$


Now, divide the numerator and the denominator by $\cos\left(\frac{x}{2}\right)$ (Note that $\cos\left(\frac{x}{2}\right) \neq 0$ for $-\frac{3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}$ except possibly at $\frac{x}{2} = -\frac{\pi}{2}$, i.e., $x=-\pi$. At $x=-\pi$, $\frac{\cos(-\pi)}{1-\sin(-\pi)} = \frac{-1}{1-0} = \frac{-1}{1} = -1$. Our simplified form should also give $\tan\left(\frac{\pi}{4} - \frac{\pi}{2}\right) = \tan\left(-\frac{\pi}{4}\right)=-1$).

$\frac{\frac{\cos\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} + \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}}{\frac{\cos\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} - \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}} = \frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)}$

Using the identity $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ and $\tan\left(\frac{\pi}{4}\right) = 1$:

$\frac{1 + \tan\left(\frac{x}{2}\right)}{1 - 1 \cdot \tan\left(\frac{x}{2}\right)} = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right)\tan\left(\frac{x}{2}\right)} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$.


So, the given expression is $y = \tan^{-1} \left( \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \right)$.

The principal value branch of $\tan^{-1} \phi$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The identity $\tan^{-1}(\tan \phi) = \phi$ is valid if $\phi \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

We need to check if the argument $\frac{\pi}{4} + \frac{x}{2}$ lies in this interval for the given range of $x$.

Given: $-\frac{3\pi}{2} < x < \frac{\pi}{2}$.

Divide by 2: $-\frac{3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}$.

Add $\frac{\pi}{4}$ to all parts of the inequality:

$-\frac{3\pi}{4} + \frac{\pi}{4} < \frac{\pi}{4} + \frac{x}{2} < \frac{\pi}{4} + \frac{\pi}{4}$

$-\frac{2\pi}{4} < \frac{\pi}{4} + \frac{x}{2} < \frac{2\pi}{4}$

$-\frac{\pi}{2} < \frac{\pi}{4} + \frac{x}{2} < \frac{\pi}{2}$


Let $\phi = \frac{\pi}{4} + \frac{x}{2}$. We see that $\phi$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$, which is the principal value branch of $\tan^{-1}$.

Therefore, $\tan^{-1}(\tan \phi) = \phi$ is valid.

$y = \tan^{-1} \left( \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) \right) = \frac{\pi}{4} + \frac{x}{2}$.


The simplest form is $\frac{\pi}{4} + \frac{x}{2}$.

Example 5: Write cot-1 $\left( \frac{1}{\sqrt{x^{2}-1}} \right)$, x > 1 in the simplest form.

Answer:

Solution:


Let the given expression be $y = \cot^{-1} \left( \frac{1}{\sqrt{x^{2}-1}} \right)$.

We are given that $x > 1$.


Consider the substitution $x = \sec \theta$.

Since $x > 1$, the value of $\theta = \sec^{-1} x$ must be in the principal value branch of $\sec^{-1}$, which is $[0, \pi] - \{\frac{\pi}{2}\}$.

For $x > 1$, $\sec \theta > 1$, which means $\theta$ lies in the interval $(0, \frac{\pi}{2})$.


Substitute $x = \sec \theta$ into the expression inside the $\cot^{-1}$ function:

$\frac{1}{\sqrt{x^{2}-1}} = \frac{1}{\sqrt{\sec^{2}\theta-1}}$

Using the identity $\sec^{2}\theta - 1 = \tan^{2}\theta$:

$= \frac{1}{\sqrt{\tan^{2}\theta}} = \frac{1}{|\tan\theta|}$

Since $\theta \in (0, \frac{\pi}{2})$, $\tan\theta$ is positive. So, $|\tan\theta| = \tan\theta$.

$= \frac{1}{\tan\theta} = \cot\theta$.


Now, substitute this back into the original expression for $y$:

$y = \cot^{-1}(\cot\theta)$.

The principal value branch of $\cot^{-1}\phi$ is $(0, \pi)$.

For the identity $\cot^{-1}(\cot\phi) = \phi$ to be valid, $\phi$ must lie in the interval $(0, \pi)$.

In our case, $\phi = \theta$. We found that $\theta \in (0, \frac{\pi}{2})$.

The interval $(0, \frac{\pi}{2})$ is a subset of $(0, \pi)$. Therefore, the identity is valid for our range of $\theta$.


$y = \theta$.

Substitute back $\theta = \sec^{-1} x$:

$y = \sec^{-1} x$.


The simplest form of $\cot^{-1} \left( \frac{1}{\sqrt{x^{2}-1}} \right)$ for $x > 1$ is $\sec^{-1} x$.


Alternate Solution:


Let $y = \cot^{-1} \left( \frac{1}{\sqrt{x^{2}-1}} \right)$, $x > 1$.

Consider the substitution $x = \text{cosec } \theta$.

Since $x > 1$, the value of $\theta = \text{cosec}^{-1} x$ must be in the principal value branch of $\text{cosec}^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$.

For $x > 1$, $\text{cosec } \theta > 1$, which means $\theta$ lies in the interval $(0, \frac{\pi}{2})$.


Substitute $x = \text{cosec } \theta$ into the expression inside the $\cot^{-1}$ function:

$\frac{1}{\sqrt{x^{2}-1}} = \frac{1}{\sqrt{\text{cosec}^{2}\theta-1}}$

Using the identity $\text{cosec}^{2}\theta - 1 = \cot^{2}\theta$:

$= \frac{1}{\sqrt{\cot^{2}\theta}} = \frac{1}{|\cot\theta|}$.

Since $\theta \in (0, \frac{\pi}{2})$, $\cot\theta$ is positive. So, $|\cot\theta| = \cot\theta$.

$= \frac{1}{\cot\theta} = \tan\theta$.


Now, substitute this back into the original expression for $y$:

$y = \cot^{-1}(\tan\theta)$.

Use the identity $\tan\theta = \cot(\frac{\pi}{2} - \theta)$.

$y = \cot^{-1}\left(\cot\left(\frac{\pi}{2} - \theta\right)\right)$.

The principal value branch of $\cot^{-1}\phi$ is $(0, \pi)$.

For the identity $\cot^{-1}(\cot\phi) = \phi$ to be valid, $\phi$ must lie in the interval $(0, \pi)$.

In our case, $\phi = \frac{\pi}{2} - \theta$. We know that $\theta \in (0, \frac{\pi}{2})$.

$0 < \theta < \frac{\pi}{2}$

Multiply by -1: $-\frac{\pi}{2} < -\theta < 0$.

Add $\frac{\pi}{2}$: $0 < \frac{\pi}{2} - \theta < \frac{\pi}{2}$.

The interval $(0, \frac{\pi}{2})$ is a subset of $(0, \pi)$. Therefore, the identity is valid for our range of $\phi$.


$y = \frac{\pi}{2} - \theta$.

Substitute back $\theta = \text{cosec}^{-1} x$:

$y = \frac{\pi}{2} - \text{cosec}^{-1} x$.


We know the identity $\sec^{-1} x + \text{cosec}^{-1} x = \frac{\pi}{2}$ for $|x| \geq 1$.

For $x > 1$, this identity holds.

$\sec^{-1} x + \text{cosec}^{-1} x = \frac{\pi}{2}$

Rearranging, we get $\sec^{-1} x = \frac{\pi}{2} - \text{cosec}^{-1} x$.

Thus, both simplified forms $\sec^{-1} x$ and $\frac{\pi}{2} - \text{cosec}^{-1} x$ are equivalent.



Exercise 2.2

Prove the following:

Question 1. 3sin–1 x = sin–1 (3x – 4x3), x∈ $\left[ -\frac{1}{2} , \frac{1}{2}\right]$

Answer:

To Prove: $3\sin^{-1} x = \sin^{-1} (3x – 4x^{3})$ for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.


Let $x = \sin \theta$.

Since $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, and the principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, $\theta = \sin^{-1} x$ must lie in this range.

For $x = -\frac{1}{2}$, $\sin \theta = -\frac{1}{2}$, which gives $\theta = -\frac{\pi}{6}$ in the principal branch.

For $x = \frac{1}{2}$, $\sin \theta = \frac{1}{2}$, which gives $\theta = \frac{\pi}{6}$ in the principal branch.

Thus, for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$, we have $\theta \in \left[-\frac{\pi}{6}, \frac{\pi}{6}\right]$.

$-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}$

... (i)


Consider the Right Hand Side (RHS) of the identity: $\sin^{-1} (3x – 4x^{3})$.

Substitute $x = \sin \theta$ into the expression $3x - 4x^3$:

$3x - 4x^3 = 3\sin \theta - 4\sin^3 \theta$.

Using the trigonometric identity $\sin(3\theta) = 3\sin \theta - 4\sin^3 \theta$, we have:

$3x - 4x^3 = \sin(3\theta)$.


So, RHS = $\sin^{-1}(\sin(3\theta))$.

For the identity $\sin^{-1}(\sin \phi) = \phi$ to hold, the angle $\phi$ must be in the principal value branch of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

In this case, $\phi = 3\theta$. We need to check if $3\theta$ lies in $[-\frac{\pi}{2}, \frac{\pi}{2}]$ based on the range of $\theta$ in (i).

From (i), $-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}$.

Multiplying the inequality by 3:

$-\frac{\pi}{6} \times 3 \leq 3\theta \leq \frac{\pi}{6} \times 3$

$-\frac{\pi}{2} \leq 3\theta \leq \frac{\pi}{2}$

... (ii)

From (ii), the angle $3\theta$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$, which is the principal value branch of $\sin^{-1}$.


Therefore, $\sin^{-1}(\sin(3\theta)) = 3\theta$.

Substitute back $\theta = \sin^{-1} x$:

RHS = $3\sin^{-1} x$.

This is equal to the Left Hand Side (LHS).


Thus, $3\sin^{-1} x = \sin^{-1} (3x – 4x^{3})$ is proved for $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$.

Question 2. 3cos–1 x = cos–1 (4x3 – 3x), x∈ $\left[ \frac{1}{2} , 1 \right]$

Answer:

To Prove: $3\cos^{-1} x = \cos^{-1} (4x^{3} – 3x)$ for $x \in \left[\frac{1}{2}, 1\right]$.


Let $x = \cos \theta$.

Since $x \in \left[\frac{1}{2}, 1\right]$, and the principal value branch of $\cos^{-1}x$ is $[0, \pi]$, $\theta = \cos^{-1} x$ must lie in this range.

For $x = 1$, $\cos \theta = 1$, which gives $\theta = 0$ in the principal branch.

For $x = \frac{1}{2}$, $\cos \theta = \frac{1}{2}$, which gives $\theta = \frac{\pi}{3}$ in the principal branch.

Since $\cos \theta$ is a decreasing function on $[0, \pi]$, for $x \in \left[\frac{1}{2}, 1\right]$, we have $\theta = \cos^{-1} x \in \left[0, \frac{\pi}{3}\right]$.

$0 \leq \theta \leq \frac{\pi}{3}$

... (i)


Consider the Right Hand Side (RHS) of the identity: $\cos^{-1} (4x^{3} – 3x)$.

Substitute $x = \cos \theta$ into the expression $4x^3 - 3x$:

$4x^3 - 3x = 4\cos^3 \theta - 3\cos \theta$.

Using the trigonometric identity $\cos(3\theta) = 4\cos^3 \theta - 3\cos \theta$, we have:

$4x^3 - 3x = \cos(3\theta)$.


So, RHS = $\cos^{-1}(\cos(3\theta))$.

For the identity $\cos^{-1}(\cos \phi) = \phi$ to hold, the angle $\phi$ must be in the principal value branch of $\cos^{-1}$, which is $[0, \pi]$.

In this case, $\phi = 3\theta$. We need to check if $3\theta$ lies in $[0, \pi]$ based on the range of $\theta$ in (i).

From (i), $0 \leq \theta \leq \frac{\pi}{3}$.

Multiplying the inequality by 3:

$0 \times 3 \leq 3\theta \leq \frac{\pi}{3} \times 3$

$0 \leq 3\theta \leq \pi$

... (ii)

From (ii), the angle $3\theta$ lies in the interval $[0, \pi]$, which is the principal value branch of $\cos^{-1}$.


Therefore, $\cos^{-1}(\cos(3\theta)) = 3\theta$.

Substitute back $\theta = \cos^{-1} x$:

RHS = $3\cos^{-1} x$.

This is equal to the Left Hand Side (LHS).


Thus, $3\cos^{-1} x = \cos^{-1} (4x^{3} – 3x)$ is proved for $x \in \left[\frac{1}{2}, 1\right]$.

Write the following functions in the simplest form:

Question 3. tan-1 $\frac{\sqrt{1+x^{2}}-1}{x}$ , x ≠ 0

Answer:

Let the given expression be $y = \tan^{-1} \left( \frac{\sqrt{1+x^{2}}-1}{x} \right)$.

We are given that $x \neq 0$.


Consider the substitution $x = \tan \theta$.

Since $x \neq 0$, $\tan \theta \neq 0$, which implies $\theta \neq n\pi$ for any integer $n$.

If we consider $\theta = \tan^{-1} x$, the principal value branch of $\tan^{-1} x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

So, $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\theta \neq 0$.


Substitute $x = \tan \theta$ into the expression inside the $\tan^{-1}$ function:

$\frac{\sqrt{1+x^{2}}-1}{x} = \frac{\sqrt{1+\tan^{2}\theta}-1}{\tan \theta}$

Using the identity $1+\tan^{2}\theta = \sec^{2}\theta$:

$= \frac{\sqrt{\sec^{2}\theta}-1}{\tan \theta} = \frac{|\sec\theta|-1}{\tan \theta}$

For $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $\cos \theta > 0$, so $\sec \theta = \frac{1}{\cos \theta} > 0$. Thus, $|\sec\theta| = \sec\theta$.

$= \frac{\sec\theta-1}{\tan \theta}$


Convert $\sec \theta$ and $\tan \theta$ to terms of $\sin \theta$ and $\cos \theta$:

$= \frac{\frac{1}{\cos \theta}-1}{\frac{\sin \theta}{\cos \theta}} = \frac{\frac{1-\cos \theta}{\cos \theta}}{\frac{\sin \theta}{\cos \theta}} = \frac{1-\cos \theta}{\sin \theta}$


Use the half-angle identities: $1-\cos \theta = 2\sin^{2}\left(\frac{\theta}{2}\right)$ and $\sin \theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$.

$= \frac{2\sin^{2}\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}$

Since $x \neq 0$, $\theta \neq 0$. Also $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, so $\frac{\theta}{2} \in (-\frac{\pi}{4}, \frac{\pi}{4})$ and $\frac{\theta}{2} \neq 0$. Thus, $\sin\left(\frac{\theta}{2}\right) \neq 0$. We can cancel $\sin\left(\frac{\theta}{2}\right)$.

$= \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} = \tan\left(\frac{\theta}{2}\right)$.


So, the given expression is $y = \tan^{-1} \left( \tan\left(\frac{\theta}{2}\right) \right)$.

The principal value branch of $\tan^{-1}\phi$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The identity $\tan^{-1}(\tan \phi) = \phi$ is valid if $\phi \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

In our case, $\phi = \frac{\theta}{2}$. We know that $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ and $\theta \neq 0$.

Multiplying the inequality $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ by $\frac{1}{2}$, we get $-\frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{4}$.

The interval $(-\frac{\pi}{4}, \frac{\pi}{4})$ is a subset of $(-\frac{\pi}{2}, \frac{\pi}{2})$. Also, $\frac{\theta}{2} \neq 0$ since $\theta \neq 0$.

Therefore, $\tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2}$ is valid.


Substitute back $\theta = \tan^{-1} x$:

$y = \frac{1}{2}\tan^{-1} x$.


The simplest form is $\frac{1}{2}\tan^{-1} x$.

Question 4. tan-1 $\left( \sqrt{\frac{1-cos\;x}{1+cos\;x}} \right)$, 0 < x < π

Answer:

Let the given expression be $y = \tan^{-1} \left( \sqrt{\frac{1-\cos x}{1+\cos x}} \right)$.

We are given the condition $0 < x < \pi$.


We simplify the argument of the $\tan^{-1}$ function using half-angle identities.

Recall the identities: $1 - \cos x = 2\sin^2\left(\frac{x}{2}\right)$ and $1 + \cos x = 2\cos^2\left(\frac{x}{2}\right)$.

Substitute these into the expression under the square root:

$\frac{1-\cos x}{1+\cos x} = \frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} = \frac{\sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right)$.


Now, take the square root:

$\sqrt{\frac{1-\cos x}{1+cos x}} = \sqrt{\tan^2\left(\frac{x}{2}\right)} = \left|\tan\left(\frac{x}{2}\right)\right|$.


Consider the given domain for $x$: $0 < x < \pi$.

Dividing the inequality by 2, we get the range for $\frac{x}{2}$:

0 < $\frac{x}{2}$ < $\frac{\pi}{2}$

In the interval $(0, \frac{\pi}{2})$, the value of $\tan\left(\frac{x}{2}\right)$ is positive.

Therefore, $\left|\tan\left(\frac{x}{2}\right)\right| = \tan\left(\frac{x}{2}\right)$.


Substitute this back into the expression for $y$:

$y = \tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right)$.


The principal value branch of $\tan^{-1}\phi$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The identity $\tan^{-1}(\tan \phi) = \phi$ holds true if $\phi$ lies within this interval.

In our case, $\phi = \frac{x}{2}$. From the range $0 < \frac{x}{2} < \frac{\pi}{2}$, we see that $\frac{x}{2}$ lies within the principal value branch $(-\frac{\pi}{2}, \frac{\pi}{2})$.


Thus, $\tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2}$.


The simplest form of the given function is $\frac{x}{2}$.

Question 5. tan-1 $\left( \frac{cos \;x - sin \;x}{cos \;x + sin \;x} \right)$, $\frac{-π}{4} < x < \frac{3π}{4}$

Answer:

Let the given expression be $y = \tan^{-1} \left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)$.

We are given the condition $-\frac{\pi}{4} < x < \frac{3\pi}{4}$.


We simplify the argument of the $\tan^{-1}$ function by dividing the numerator and the denominator by $\cos x$. Note that for the given range $-\frac{\pi}{4} < x < \frac{3\pi}{4}$, $\cos x = 0$ only at $x = \frac{\pi}{2}$. If $x = \frac{\pi}{2}$, the expression is $\tan^{-1}(\frac{0-1}{0+1}) = \tan^{-1}(-1) = -\frac{\pi}{4}$. Our final simplified form should yield the same value at $x=\frac{\pi}{2}$.

$\frac{\cos x - \sin x}{\cos x + \sin x} = \frac{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}} = \frac{1 - \tan x}{1 + \tan x}$


We use the identity $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$.

Let $A = \frac{\pi}{4}$. Then $\tan A = \tan\left(\frac{\pi}{4}\right) = 1$. Let $B = x$.

So, $\frac{1 - \tan x}{1 + \tan x} = \frac{\tan\left(\frac{\pi}{4}\right) - \tan x}{1 + \tan\left(\frac{\pi}{4}\right)\tan x} = \tan\left(\frac{\pi}{4} - x\right)$.


Now, substitute this back into the expression for $y$:

$y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - x\right)\right)$.


The principal value branch of $\tan^{-1}\phi$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The identity $\tan^{-1}(\tan \phi) = \phi$ is valid if $\phi$ lies within this interval.

In our case, $\phi = \frac{\pi}{4} - x$. We need to check if this argument lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ for the given range of $x$.

Given: $-\frac{\pi}{4} < x < \frac{3\pi}{4}$.

Multiply the inequality by -1 and reverse the inequality signs:

$-\frac{3\pi}{4} < -x < \frac{\pi}{4}$

Now, add $\frac{\pi}{4}$ to all parts of the inequality:

$-\frac{3\pi}{4} + \frac{\pi}{4} < \frac{\pi}{4} - x < \frac{\pi}{4} + \frac{\pi}{4}$

$-\frac{2\pi}{4} < \frac{\pi}{4} - x < \frac{2\pi}{4}$

$-\frac{\pi}{2} < \frac{\pi}{4} - x < \frac{\pi}{2}$


The range of the argument $\frac{\pi}{4} - x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$, which is the principal value branch of $\tan^{-1}$.

Therefore, the identity $\tan^{-1}(\tan \phi) = \phi$ is valid for $\phi = \frac{\pi}{4} - x$ in this range.

$y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - x\right)\right) = \frac{\pi}{4} - x$.


The simplest form of the given function is $\frac{\pi}{4} - x$.

Question 6. tan-1 $\frac{x}{\sqrt{a^{2}-x^{2}}}$ , |x| < a

Answer:

Let the given expression be $y = \tan^{-1} \left( \frac{x}{\sqrt{a^{2}-x^{2}}} \right)$.

We are given the condition $|x| < a$. This implies $a > 0$ for the condition to be meaningful and for the expression $\sqrt{a^2-x^2}$ to be defined (since $a^2-x^2 > 0$).


Consider the substitution $x = a \sin \theta$.

Since $|x| < a$ and $a > 0$, we have $\frac{|x|}{a} < 1$, which means $\left|\frac{x}{a}\right| < 1$.

Let $\theta = \sin^{-1}\left(\frac{x}{a}\right)$. The principal value branch of $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$. For $\frac{x}{a} \in (-1, 1)$, the value of $\theta = \sin^{-1}\left(\frac{x}{a}\right)$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$


Substitute $x = a \sin \theta$ into the expression inside the $\tan^{-1}$ function:

$\frac{x}{\sqrt{a^{2}-x^{2}}} = \frac{a \sin \theta}{\sqrt{a^{2}-(a \sin \theta)^{2}}}$

$= \frac{a \sin \theta}{\sqrt{a^{2}-a^{2}\sin^{2}\theta}}$

$= \frac{a \sin \theta}{\sqrt{a^{2}(1-\sin^{2}\theta)}}$

$= \frac{a \sin \theta}{\sqrt{a^{2}\cos^{2}\theta}}$

$= \frac{a \sin \theta}{|a \cos \theta|}$

Since $a > 0$, $|a| = a$.

$= \frac{a \sin \theta}{a |\cos \theta|}$

$= \frac{\sin \theta}{|\cos \theta|}$

From the range of $\theta$, $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, we know that $\cos \theta > 0$.

So, $|\cos \theta| = \cos \theta$.

$= \frac{\sin \theta}{\cos \theta} = \tan \theta$.


Now, substitute this back into the expression for $y$:

$y = \tan^{-1}(\tan \theta)$.


The principal value branch of $\tan^{-1}\phi$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The identity $\tan^{-1}(\tan \phi) = \phi$ is valid if $\phi$ lies within this interval.

In our case, $\phi = \theta$. We found that $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

This interval is exactly the principal value branch of $\tan^{-1}$.

Therefore, $y = \tan^{-1}(\tan \theta) = \theta$.


Substitute back $\theta = \sin^{-1}\left(\frac{x}{a}\right)$:

$y = \sin^{-1}\left(\frac{x}{a}\right)$.


The simplest form of the given function is $\sin^{-1}\left(\frac{x}{a}\right)$.

Question 7. tan-1 $\left( \frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} \right)$ , a > 0 ; $\frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$

Answer:

Let the given expression be $y = \tan^{-1} \left( \frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} \right)$.

We are given the conditions $a > 0$ and $-\frac{a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$.


Consider the substitution $x = a \tan \theta$.

From the condition $-\frac{a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$, substitute $x = a \tan \theta$:

$-\frac{a}{\sqrt{3}} < a \tan \theta < \frac{a}{\sqrt{3}}$

Since $a > 0$, we can divide by $a$ without changing the inequalities:

$-\frac{1}{\sqrt{3}} < \tan \theta < \frac{1}{\sqrt{3}}$

The principal value branch of $\tan^{-1}u$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$, and $\tan \theta$ is increasing on this interval.

Since $\tan\left(-\frac{\pi}{6}\right) = -\frac{1}{\sqrt{3}}$ and $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, the inequality $-\frac{1}{\sqrt{3}} < \tan \theta < \frac{1}{\sqrt{3}}$ implies:

$-\frac{\pi}{6} < \theta < \frac{\pi}{6}$

... (i)

From $x = a \tan \theta$, we have $\frac{x}{a} = \tan \theta$, so $\theta = \tan^{-1}\left(\frac{x}{a}\right)$. Note that this is valid because of the range of $\theta$ in (i) which is within the principal branch $(-\frac{\pi}{2}, \frac{\pi}{2})$.


Substitute $x = a \tan \theta$ into the expression inside the $\tan^{-1}$ function:

$\frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} = \frac{3a^{2}(a \tan \theta)-(a \tan \theta)^{3}}{a^{3}-3a(a \tan \theta)^{2}}$

$= \frac{3a^{3} \tan \theta - a^{3} \tan^{3}\theta}{a^{3}-3a(a^{2} \tan^{2}\theta)}$

$= \frac{3a^{3} \tan \theta - a^{3} \tan^{3}\theta}{a^{3}-3a^{3} \tan^{2}\theta}$

Factor out $a^3$ from the numerator and the denominator:

$= \frac{a^{3}(3 \tan \theta - \tan^{3}\theta)}{a^{3}(1-3 \tan^{2}\theta)}$

Since $a > 0$, $a^3 \neq 0$, so we can cancel $a^3$:

$= \frac{3 \tan \theta - \tan^{3}\theta}{1-3 \tan^{2}\theta}$


Using the trigonometric identity $\tan(3\phi) = \frac{3\tan\phi - \tan^3\phi}{1 - 3\tan^2\phi}$, with $\phi = \theta$, we have:

$\frac{3 \tan \theta - \tan^{3}\theta}{1-3 \tan^{2}\theta} = \tan(3\theta)$.


Now, substitute this back into the original expression for $y$:

$y = \tan^{-1}(\tan(3\theta))$.


The identity $\tan^{-1}(\tan \phi) = \phi$ holds true if $\phi$ lies within the principal value branch of $\tan^{-1}$, which is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

In our case, $\phi = 3\theta$. We check the range of $3\theta$ from (i):

$-\frac{\pi}{6} < \theta < \frac{\pi}{6}$

Multiply by 3:

$-\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$

The range of $3\theta$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$, which is the principal value branch of $\tan^{-1}$.

Therefore, the identity $\tan^{-1}(\tan \phi) = \phi$ is valid for $\phi = 3\theta$ in this range.

$y = \tan^{-1}(\tan(3\theta)) = 3\theta$.


Substitute back $\theta = \tan^{-1}\left(\frac{x}{a}\right)$:

$y = 3\tan^{-1}\left(\frac{x}{a}\right)$.


The simplest form of the given function is $3\tan^{-1}\left(\frac{x}{a}\right)$.

Find the values of each of the following:

Question 8. tan-1 $\left[2 cos\left( 2sin^{-1} \frac{1}{2}\right) \right]$

Answer:

We need to find the value of the expression $\tan^{-1} \left[2 \cos\left( 2\sin^{-1} \frac{1}{2}\right) \right]$.

We evaluate the expression by working from the innermost function outwards.


First, consider the innermost term $\sin^{-1} \frac{1}{2}$.

Let $y = \sin^{-1} \frac{1}{2}$. This means $\sin y = \frac{1}{2}$.

The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

The angle in this interval whose sine is $\frac{1}{2}$ is $\frac{\pi}{6}$.

$\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$

Since $\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.


Next, evaluate $2 \sin^{-1} \frac{1}{2}$.

$2 \times \sin^{-1} \frac{1}{2} = 2 \times \frac{\pi}{6} = \frac{\pi}{3}$.


Now, evaluate $\cos\left( 2\sin^{-1} \frac{1}{2}\right)$, which is $\cos\left(\frac{\pi}{3}\right)$.

$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$


Next, evaluate $2 \cos\left( 2\sin^{-1} \frac{1}{2}\right)$, which is $2 \times \frac{1}{2}$.

$2 \times \frac{1}{2} = 1$


Finally, evaluate the outermost function $\tan^{-1} \left[2 \cos\left( 2\sin^{-1} \frac{1}{2}\right) \right]$, which is $\tan^{-1}(1)$.

Let $z = \tan^{-1}(1)$. This means $\tan z = 1$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The angle in this interval whose tangent is 1 is $\frac{\pi}{4}$.

$\tan^{-1}(1) = \frac{\pi}{4}$

Since $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$.


Therefore, the value of the given expression is $\frac{\pi}{4}$.

Question 9. $\tan\frac{1}{2}\left[ \sin^{-1} \frac{2x}{1+x^2}+ \cos^{-1}\frac{1-y^2}{1+y^2} \right]$ , |x| < 1, y > 0 and xy < 1

Answer:

We need to find the value of the expression $\tan\frac{1}{2}\left[ \sin^{-1} \frac{2x}{1+x^2}+ \cos^{-1}\frac{1-y^2}{1+y^2} \right]$.

We are given the conditions $|x| < 1$, $y > 0$, and $xy < 1$.


We use the following standard identities:

For $|x| \leq 1$, $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$. The given condition $|x| < 1$ satisfies this range.

$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x$

[Since $|x|<1$]


For $y \geq 0$, $\cos^{-1}\left(\frac{1-y^2}{1+y^2}\right) = 2\tan^{-1}y$. The given condition $y > 0$ satisfies this range.

$\cos^{-1}\left(\frac{1-y^2}{1+y^2}\right) = 2\tan^{-1}y$

[Since $y>0$]


Substitute these identities into the given expression:

Expression $= \tan\frac{1}{2}\left[ (2\tan^{-1} x) + (2\tan^{-1} y) \right]$

$= \tan\frac{1}{2}\left[ 2(\tan^{-1} x + \tan^{-1} y) \right]$

$= \tan(\tan^{-1} x + \tan^{-1} y)$


We use the identity $\tan^{-1} A + \tan^{-1} B = \tan^{-1}\left(\frac{A+B}{1-AB}\right)$, which is valid when $AB < 1$.

In our case, $A=x$ and $B=y$. The given condition is $xy < 1$, so the identity is applicable.

$\tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$

[Since $xy<1$]


Substitute this back into the expression:

Expression $= \tan\left(\tan^{-1}\left(\frac{x+y}{1-xy}\right)\right)$


Using the property $\tan(\tan^{-1} Z) = Z$ for all real numbers $Z$. Here $Z = \frac{x+y}{1-xy}$. Since $xy < 1$, $1-xy \neq 0$, so $Z$ is a real number.

Expression $= \frac{x+y}{1-xy}$.


The value of the expression is $\frac{x+y}{1-xy}$.

Find the values of each of the expressions in Exercises 10 to 15

Question 10. sin-1 $\left(sin \frac{2\pi}{3} \right)$

Answer:

We need to find the value of $\sin^{-1} \left(\sin \frac{2\pi}{3}\right)$.


We know the property $\sin^{-1}(\sin \theta) = \theta$ if $\theta$ lies in the principal value branch of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

The angle given is $\frac{2\pi}{3}$. Let's check if this angle is within the principal value branch:

$\frac{2\pi}{3} = 120^\circ$

[Value in degrees]

$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] = [-90^\circ, 90^\circ]$

[Principal value branch]

Since $120^\circ$ is not in the interval $[-90^\circ, 90^\circ]$, the property $\sin^{-1}(\sin \theta) = \theta$ cannot be applied directly.


We need to find an angle $\phi$ in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$ such that $\sin \phi = \sin \frac{2\pi}{3}$.

We know that $\sin(\pi - \theta) = \sin \theta$.

So, $\sin \frac{2\pi}{3} = \sin\left(\pi - \frac{2\pi}{3}\right) = \sin\left(\frac{3\pi - 2\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)$.


Now, the expression becomes $\sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right)$.

The angle is now $\frac{\pi}{3}$. Let's check if this angle is in the principal value branch of $\sin^{-1}$:

$\frac{\pi}{3} = 60^\circ$

[Value in degrees]

$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] = [-90^\circ, 90^\circ]$

[Principal value branch]

Since $60^\circ$ is in the interval $[-90^\circ, 90^\circ]$, the property $\sin^{-1}(\sin \phi) = \phi$ can be applied.


Therefore, $\sin^{-1}\left(\sin\left(\frac{\pi}{3}\right)\right) = \frac{\pi}{3}$.


The value of the expression is $\frac{\pi}{3}$.

Question 11. tan-1 $\left(tan \frac{3\pi}{4} \right)$

Answer:

We need to find the value of $\tan^{-1} \left(\tan \frac{3\pi}{4}\right)$.


We know the property $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies in the principal value branch of $\tan^{-1}$, which is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The angle given is $\frac{3\pi}{4}$. Let's check if this angle is within the principal value branch:

$\frac{3\pi}{4} = 135^\circ$

[Value in degrees]

$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = (-90^\circ, 90^\circ)$

[Principal value branch]

Since $135^\circ$ is not in the interval $(-90^\circ, 90^\circ)$, the property $\tan^{-1}(\tan \theta) = \theta$ cannot be applied directly.


We need to find an angle $\phi$ in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan \phi = \tan \frac{3\pi}{4}$.

We know that $\tan \frac{3\pi}{4} = \tan\left(\pi - \frac{\pi}{4}\right)$.

Using the identity $\tan(\pi - \theta) = -\tan \theta$:

$\tan\left(\pi - \frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$.


Now we need to find an angle $\phi \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan \phi = -1$.

We know that $\tan\left(-\frac{\pi}{4}\right) = -1$.

$\tan \frac{3\pi}{4} = -1 = \tan\left(-\frac{\pi}{4}\right)$


So, the expression becomes $\tan^{-1}\left(\tan\left(-\frac{\pi}{4}\right)\right)$.

The angle is now $-\frac{\pi}{4}$. Let's check if this angle is in the principal value branch of $\tan^{-1}$:

$-\frac{\pi}{4} = -45^\circ$

[Value in degrees]

$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = (-90^\circ, 90^\circ)$

[Principal value branch]

Since $-45^\circ$ is in the interval $(-90^\circ, 90^\circ)$, the property $\tan^{-1}(\tan \phi) = \phi$ can be applied.


Therefore, $\tan^{-1}\left(\tan\left(-\frac{\pi}{4}\right)\right) = -\frac{\pi}{4}$.


The value of the expression is $-\frac{\pi}{4}$.

Question 12. tan $\left(sin^{-1} \frac{3}{5}+cot^{-1}\frac{3}{2} \right)$

Answer:

We need to find the value of the expression $\tan \left(\sin^{-1} \frac{3}{5} + \cot^{-1}\frac{3}{2} \right)$.

We can rewrite the expression in the form $\tan(A+B)$, where $A = \sin^{-1} \frac{3}{5}$ and $B = \cot^{-1}\frac{3}{2}$.

To evaluate $\tan(A+B)$, we need to find $\tan A$ and $\tan B$.


Consider $A = \sin^{-1} \frac{3}{5}$. Let $\theta = \sin^{-1} \frac{3}{5}$.

Then $\sin \theta = \frac{3}{5}$. Since $\frac{3}{5} > 0$, the principal value $\theta$ lies in $(0, \frac{\pi}{2})$.

We can find $\cos \theta$ using the identity $\sin^2 \theta + \cos^2 \theta = 1$.

$\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25-9}{25} = \frac{16}{25}$.

Since $\theta \in (0, \frac{\pi}{2})$, $\cos \theta$ is positive. So, $\cos \theta = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, $\tan A = \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{4/5} = \frac{3}{4}$.

$\tan A = \frac{3}{4}$


Consider $B = \cot^{-1}\frac{3}{2}$. Let $\phi = \cot^{-1}\frac{3}{2}$.

Then $\cot \phi = \frac{3}{2}$. Since $\frac{3}{2} > 0$, the principal value $\phi$ lies in $(0, \frac{\pi}{2})$.

We can find $\tan \phi$ using the identity $\tan \phi = \frac{1}{\cot \phi}$.

$\tan B = \tan \phi = \frac{1}{3/2} = \frac{2}{3}$.

$\tan B = \frac{2}{3}$


The expression is $\tan(A+B)$. We use the trigonometric identity $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$.

Substitute the values of $\tan A$ and $\tan B$:

$\tan(A+B) = \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}}$

Calculate the numerator: $\frac{3}{4} + \frac{2}{3} = \frac{3 \times 3 + 4 \times 2}{12} = \frac{9 + 8}{12} = \frac{17}{12}$.

Calculate the denominator: $1 - \frac{\cancel{3}\times\cancel{2}}{\cancel{4}_{2}\times\cancel{3}} = 1 - \frac{1}{2} = \frac{2-1}{2} = \frac{1}{2}$.

So, $\tan(A+B) = \frac{\frac{17}{12}}{\frac{1}{2}}$.

$= \frac{17}{12} \times \frac{2}{1} = \frac{17 \times \cancel{2}^{1}}{\cancel{12}_{6}} = \frac{17}{6}$.


Alternatively, we can convert both inverse functions to $\tan^{-1}$ first.

From the calculations above, $A = \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$.

And $B = \cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$.

The expression is $\tan\left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3}\right)$.

Use the identity $\tan^{-1} X + \tan^{-1} Y = \tan^{-1}\left(\frac{X+Y}{1-XY}\right)$ for $XY < 1$.

Here $X = \frac{3}{4}$ and $Y = \frac{2}{3}$. Their product $XY = \frac{3}{4} \times \frac{2}{3} = \frac{1}{2}$, which is less than 1.

So, $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} = \tan^{-1}\left(\frac{\frac{3}{4}+\frac{2}{3}}{1 - \frac{3}{4}\times\frac{2}{3}}\right) = \tan^{-1}\left(\frac{\frac{17}{12}}{\frac{1}{2}}\right) = \tan^{-1}\left(\frac{17}{6}\right)$.

The expression becomes $\tan\left(\tan^{-1}\left(\frac{17}{6}\right)\right)$.

Using the property $\tan(\tan^{-1} Z) = Z$ for any real number $Z$, we get:

$\tan\left(\tan^{-1}\left(\frac{17}{6}\right)\right) = \frac{17}{6}$.


The value of the expression is $\frac{17}{6}$.

Question 13. cos-1$\left( cos\frac{7\pi}{6} \right)$ is equal to

(A) $\frac{7\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{6}$

Answer:

We need to find the value of $\cos^{-1} \left(\cos \frac{7\pi}{6}\right)$.


We know the property $\cos^{-1}(\cos \theta) = \theta$ if $\theta$ lies in the principal value branch of $\cos^{-1}$, which is $[0, \pi]$.

The angle given is $\frac{7\pi}{6}$. Let's check if this angle is within the principal value branch:

$\frac{7\pi}{6} = \frac{7}{6} \times 180^\circ = 7 \times 30^\circ = 210^\circ$

[Value in degrees]

$[0, \pi] = [0^\circ, 180^\circ]$

[Principal value branch]

Since $210^\circ$ is not in the interval $[0^\circ, 180^\circ]$, the property $\cos^{-1}(\cos \theta) = \theta$ cannot be applied directly.


We need to find an angle $\phi$ in the interval $[0, \pi]$ such that $\cos \phi = \cos \frac{7\pi}{6}$.

We know that the cosine function is positive in the first and fourth quadrants and negative in the second and third quadrants.

The angle $\frac{7\pi}{6}$ is in the third quadrant, so $\cos \frac{7\pi}{6}$ is negative.

The reference angle is $\frac{7\pi}{6} - \pi = \frac{\pi}{6}$. So, $\cos \frac{7\pi}{6} = -\cos \frac{\pi}{6}$.


We need an angle $\phi \in [0, \pi]$ such that $\cos \phi = -\cos \frac{\pi}{6}$.

In the second quadrant, $\cos(\pi - \theta) = -\cos \theta$.

Let $\theta = \frac{\pi}{6}$. Then $\cos\left(\pi - \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right)$.

$\pi - \frac{\pi}{6} = \frac{6\pi - \pi}{6} = \frac{5\pi}{6}$.

So, $\cos \frac{7\pi}{6} = \cos \frac{5\pi}{6}$.


Now, the expression becomes $\cos^{-1}\left(\cos\left(\frac{5\pi}{6}\right)\right)$.

The angle is now $\frac{5\pi}{6}$. Let's check if this angle is in the principal value branch of $\cos^{-1}$:

$\frac{5\pi}{6} = \frac{5}{6} \times 180^\circ = 5 \times 30^\circ = 150^\circ$

[Value in degrees]

$[0, \pi] = [0^\circ, 180^\circ]$

[Principal value branch]

Since $150^\circ$ is in the interval $[0^\circ, 180^\circ]$, the property $\cos^{-1}(\cos \phi) = \phi$ can be applied.


Therefore, $\cos^{-1}\left(\cos\left(\frac{5\pi}{6}\right)\right) = \frac{5\pi}{6}$.


The value of the expression is $\frac{5\pi}{6}$.

Comparing this with the given options, the correct option is (B).

Question 14. sin $\left( \frac{\pi}{3}-sin^{-1} \left( -\frac{1}{2} \right)\right)$ is equal to

(A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) 1

Answer:

We need to find the value of $\sin \left( \frac{\pi}{3}-\sin^{-1} \left( -\frac{1}{2} \right)\right)$.

We evaluate the expression by working from the innermost function outwards.


First, consider the innermost term $\sin^{-1} \left( -\frac{1}{2} \right)$.

Let $y = \sin^{-1} \left( -\frac{1}{2} \right)$. This means $\sin y = -\frac{1}{2}$.

The principal value branch of $\sin^{-1}x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We know that $\sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Since $\sin y$ is negative, $y$ must be in the interval $[-\frac{\pi}{2}, 0]$.

Using the identity $\sin(-\theta) = -\sin\theta$, we have $\sin y = -\sin\left(\frac{\pi}{6}\right) = \sin\left(-\frac{\pi}{6}\right)$.

The angle $-\frac{\pi}{6}$ lies in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

$\sin^{-1} \left( -\frac{1}{2} \right) = -\frac{\pi}{6}$


Next, substitute this value into the argument of the outer sine function: $\frac{\pi}{3}-\sin^{-1} \left( -\frac{1}{2} \right)$.

Argument $= \frac{\pi}{3} - \left(-\frac{\pi}{6}\right) = \frac{\pi}{3} + \frac{\pi}{6}$.

To add these fractions, find a common denominator, which is 6.

Argument $= \frac{2\pi}{6} + \frac{\pi}{6} = \frac{2\pi + \pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}$.


Finally, evaluate the sine of this angle: $\sin\left(\frac{\pi}{2}\right)$.

$\sin\left(\frac{\pi}{2}\right) = 1$


The value of the expression is 1.

Comparing this with the given options, the correct option is (D).

Question 15. tan-1 $\sqrt{3}$ - cot-1 ($-\sqrt{3}$) is equal to

(A) π

(B) $-\frac{\pi}{2}$

(C) 0

(D) $2\sqrt{3}$

Answer:

We need to find the value of $\tan^{-1} \sqrt{3} - \cot^{-1} (-\sqrt{3})$.

We find the principal value of each inverse trigonometric function separately.


Consider the first term, $\tan^{-1} \sqrt{3}$.

Let $y_1 = \tan^{-1} \sqrt{3}$. This means $\tan y_1 = \sqrt{3}$.

The principal value branch of $\tan^{-1}x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

We know that $\tan \left(\frac{\pi}{3}\right) = \sqrt{3}$.

The angle $\frac{\pi}{3}$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

$\tan^{-1} \sqrt{3} = \frac{\pi}{3}$

... (i)


Consider the second term, $\cot^{-1} (-\sqrt{3})$.

Let $y_2 = \cot^{-1} (-\sqrt{3})$. This means $\cot y_2 = -\sqrt{3}$.

The principal value branch of $\cot^{-1}x$ is $(0, \pi)$.

We know that $\cot \left(\frac{\pi}{6}\right) = \sqrt{3}$.

Since $\cot y_2$ is negative, $y_2$ must lie in the second quadrant within the principal value branch $(0, \pi)$.

Using the identity $\cot(\pi - \theta) = -\cot \theta$:

$\cot y_2 = -\cot\left(\frac{\pi}{6}\right)$

$\cot y_2 = \cot\left(\pi - \frac{\pi}{6}\right)$

$\cot y_2 = \cot\left(\frac{5\pi}{6}\right)$

The angle $\frac{5\pi}{6}$ lies in the interval $(0, \pi)$.

$\cot^{-1} (-\sqrt{3}) = \frac{5\pi}{6}$

... (ii)


Now, we substitute the principal values from (i) and (ii) into the given expression:

$\tan^{-1} \sqrt{3} - \cot^{-1} (-\sqrt{3}) = \frac{\pi}{3} - \frac{5\pi}{6}$.

To subtract these fractions, find a common denominator, which is 6.

$= \frac{2\pi}{6} - \frac{5\pi}{6}$

$= \frac{2\pi - 5\pi}{6}$

$= \frac{-3\pi}{6}$

Simplify the fraction:

$= -\frac{\cancel{3}^{1}\pi}{\cancel{6}_{2}} = -\frac{\pi}{2}$.


The value of the expression is $-\frac{\pi}{2}$.

Comparing this with the given options, the correct option is (B).



Example 6 - Miscellaneous Examples

Example 6: Find the value of sin-1 $\left(sin\frac{3\pi}{5} \right)$

Answer:

Solution:

We need to find the value of $\sin^{-1} \left(\sin \frac{3\pi}{5}\right)$.


We know the property $\sin^{-1}(\sin \theta) = \theta$ if and only if $\theta$ lies in the principal value branch of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

The given angle is $\theta = \frac{3\pi}{5}$.

Let's check if $\frac{3\pi}{5}$ is in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$:

$\frac{3\pi}{5} = \frac{3}{5} \times 180^\circ = 3 \times 36^\circ = 108^\circ$

[In degrees]

$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] = [-90^\circ, 90^\circ]$

[Principal value branch]

Since $108^\circ$ is not in the interval $[-90^\circ, 90^\circ]$, we cannot directly say $\sin^{-1}\left(\sin\frac{3\pi}{5}\right) = \frac{3\pi}{5}$.


We need to find an angle $\phi$ in the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$ such that $\sin \phi = \sin \frac{3\pi}{5}$.

We use the identity $\sin(\pi - \theta) = \sin \theta$.

Let $\theta = \frac{3\pi}{5}$. Then $\sin \frac{3\pi}{5} = \sin\left(\pi - \frac{3\pi}{5}\right)$.

Calculate the angle $\pi - \frac{3\pi}{5}$:

$\pi - \frac{3\pi}{5} = \frac{5\pi - 3\pi}{5} = \frac{2\pi}{5}$.


So, we have $\sin \frac{3\pi}{5} = \sin \frac{2\pi}{5}$.

Now the expression is $\sin^{-1}\left(\sin\left(\frac{2\pi}{5}\right)\right)$.

The new angle is $\phi = \frac{2\pi}{5}$. Let's check if this angle is in the principal value branch of $\sin^{-1}$:

$\frac{2\pi}{5} = \frac{2}{5} \times 180^\circ = 2 \times 36^\circ = 72^\circ$

[In degrees]

$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] = [-90^\circ, 90^\circ]$

[Principal value branch]

Since $72^\circ$ is in the interval $[-90^\circ, 90^\circ]$, the property $\sin^{-1}(\sin \phi) = \phi$ is valid for $\phi = \frac{2\pi}{5}$.


Therefore, $\sin^{-1}\left(\sin\left(\frac{2\pi}{5}\right)\right) = \frac{2\pi}{5}$.


The value of the expression is $\frac{2\pi}{5}$.



Miscellaneous Exercise on Chapter 2

Find the value of the following:

Question 1. cos-1 $\left( cos \frac{13\pi}{6} \right)$

Answer:

We need to find the value of $\cos^{-1} \left(\cos \frac{13\pi}{6}\right)$.


We know the property $\cos^{-1}(\cos \theta) = \theta$ if $\theta$ lies in the principal value branch of $\cos^{-1}$, which is $[0, \pi]$.

The given angle is $\theta = \frac{13\pi}{6}$.

Let's check if $\frac{13\pi}{6}$ is in the interval $[0, \pi]$:

$\frac{13\pi}{6} = \frac{13 \times 180^\circ}{6} = 13 \times 30^\circ = 390^\circ$

[In degrees]

$[0, \pi] = [0^\circ, 180^\circ]$

[Principal value branch]

Since $390^\circ$ is not in the interval $[0^\circ, 180^\circ]$, we cannot directly say $\cos^{-1}\left(\cos\frac{13\pi}{6}\right) = \frac{13\pi}{6}$.


We need to find an angle $\phi$ in the interval $[0, \pi]$ such that $\cos \phi = \cos \frac{13\pi}{6}$.

The cosine function has a period of $2\pi$. We can write the given angle as $\frac{13\pi}{6} = \frac{12\pi + \pi}{6} = 2\pi + \frac{\pi}{6}$.

Using the identity $\cos(2n\pi + \theta) = \cos \theta$ for any integer $n$, we have:

$\cos \frac{13\pi}{6} = \cos\left(2\pi + \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$


So, the expression becomes $\cos^{-1}\left(\cos\left(\frac{\pi}{6}\right)\right)$.

The new angle is $\phi = \frac{\pi}{6}$. Let's check if this angle is in the principal value branch of $\cos^{-1}$:

$\frac{\pi}{6} = 30^\circ$

[In degrees]

$[0, \pi] = [0^\circ, 180^\circ]$

[Principal value branch]

Since $30^\circ$ is in the interval $[0^\circ, 180^\circ]$, the property $\cos^{-1}(\cos \phi) = \phi$ is valid for $\phi = \frac{\pi}{6}$.


Therefore, $\cos^{-1}\left(\cos\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$.


The value of the expression is $\frac{\pi}{6}$.

Question 2. tan-1 $\left( tan \frac{7\pi}{6} \right)$

Answer:

We need to find the value of $\tan^{-1} \left(\tan \frac{7\pi}{6}\right)$.


We know the property $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies in the principal value branch of $\tan^{-1}$, which is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The given angle is $\theta = \frac{7\pi}{6}$.

Let's check if $\frac{7\pi}{6}$ is in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$:

$\frac{7\pi}{6} = \frac{7 \times 180^\circ}{6} = 7 \times 30^\circ = 210^\circ$

[In degrees]

$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = (-90^\circ, 90^\circ)$

[Principal value branch]

Since $210^\circ$ is not in the interval $(-90^\circ, 90^\circ)$, we cannot directly say $\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \frac{7\pi}{6}$.


We need to find an angle $\phi$ in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan \phi = \tan \frac{7\pi}{6}$.

The tangent function has a period of $\pi$. We can write the given angle as $\frac{7\pi}{6} = \pi + \frac{\pi}{6}$.

Using the identity $\tan(\pi + \theta) = \tan \theta$, we have:

$\tan \frac{7\pi}{6} = \tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right)$


So, the expression becomes $\tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right)$.

The new angle is $\phi = \frac{\pi}{6}$. Let's check if this angle is in the principal value branch of $\tan^{-1}$:

$\frac{\pi}{6} = 30^\circ$

[In degrees]

$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) = (-90^\circ, 90^\circ)$

[Principal value branch]

Since $30^\circ$ is in the interval $(-90^\circ, 90^\circ)$, the property $\tan^{-1}(\tan \phi) = \phi$ is valid for $\phi = \frac{\pi}{6}$.


Therefore, $\tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$.


The value of the expression is $\frac{\pi}{6}$.

Prove that

Question 3. 2sin-1 $\frac{3}{5}$ = tan-1 $\frac{24}{7}$

Answer:

To Prove: $2\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$.


Let the Left Hand Side (LHS) be $2\sin^{-1} \frac{3}{5}$.

Let $\theta = \sin^{-1} \frac{3}{5}$.

By definition, $\sin \theta = \frac{3}{5}$.

Since the argument $\frac{3}{5}$ is positive and $0 < \frac{3}{5} \leq 1$, the principal value of $\theta = \sin^{-1} \frac{3}{5}$ lies in the interval $(0, \frac{\pi}{2}]$.

$0 < \theta \leq \frac{\pi}{2}$

Also, since $\frac{3}{5} < \frac{1}{\sqrt{2}}$ ($\frac{3}{5} = 0.6$, $\frac{1}{\sqrt{2}} \approx 0.707$), and $\sin x$ is increasing on $[0, \frac{\pi}{2}]$, we have $\sin^{-1} \frac{3}{5} < \sin^{-1} \frac{1}{\sqrt{2}} = \frac{\pi}{4}$.

$0 < \theta < \frac{\pi}{4}$

Now, consider the angle $2\theta$. Multiplying the inequality by 2:

$0 < 2\theta < \frac{\pi}{2}$


We need to show that $2\theta$ is equal to $\tan^{-1} \frac{24}{7}$. Both angles are in the interval $(0, \frac{\pi}{2})$. If two angles in this interval have the same tangent, they are equal.

Let's find $\tan(2\theta)$. We use the double angle formula for tangent:

$\tan(2\theta) = \frac{2\tan \theta}{1-\tan^2 \theta}$

We need to find $\tan \theta$. We know $\sin \theta = \frac{3}{5}$ and $\theta \in (0, \frac{\pi}{4})$.

Using the identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$, we first find $\cos \theta$. Since $\theta \in (0, \frac{\pi}{4})$, $\cos \theta > 0$.

$\cos \theta = \sqrt{1-\sin^2 \theta} = \sqrt{1-\left(\frac{3}{5}\right)^2} = \sqrt{1-\frac{9}{25}} = \sqrt{\frac{25-9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

Now find $\tan \theta$:

$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{4/5} = \frac{3}{4}$


Substitute this value into the expression for $\tan(2\theta)$:

$\tan(2\theta) = \frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^2} = \frac{\frac{6}{4}}{1-\frac{9}{16}} = \frac{\frac{3}{2}}{\frac{16-9}{16}} = \frac{\frac{3}{2}}{\frac{7}{16}}$

$\tan(2\theta) = \frac{3}{2} \times \frac{16}{7} = \frac{3 \times \cancel{16}^{8}}{\cancel{2}_{1} \times 7} = \frac{24}{7}$


So, we have $\tan(2\theta) = \frac{24}{7}$.

Since $0 < 2\theta < \frac{\pi}{2}$, we can apply the $\tan^{-1}$ function to both sides:

$\tan^{-1}(\tan(2\theta)) = \tan^{-1}\left(\frac{24}{7}\right)$

As $2\theta$ is within the principal value branch of $\tan^{-1}$, $\tan^{-1}(\tan(2\theta)) = 2\theta$.

$2\theta = \tan^{-1}\left(\frac{24}{7}\right)$

Substitute back $\theta = \sin^{-1} \frac{3}{5}$:

$2\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$

This is the Right Hand Side (RHS) of the identity.


Thus, $2\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$ is proved.

Question 4. sin-1 $\frac{8}{17}$ + sin-1 $\frac{3}{5}$ = tan-1 $\frac{77}{36}$

Answer:

To Prove: $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$.


Consider the Left Hand Side (LHS): $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$.

We will convert each $\sin^{-1}$ term into a $\tan^{-1}$ term.


Let $\alpha = \sin^{-1} \frac{8}{17}$. By definition, $\sin \alpha = \frac{8}{17}$.

Since $0 < \frac{8}{17} < 1$, the principal value of $\alpha$ lies in the interval $(0, \frac{\pi}{2})$.

For $\alpha \in (0, \frac{\pi}{2})$, $\cos \alpha > 0$. We can find $\cos \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{1 - \frac{64}{289}} = \sqrt{\frac{289 - 64}{289}} = \sqrt{\frac{225}{289}} = \frac{15}{17}$

Now, we find $\tan \alpha$:

$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{8/17}{15/17} = \frac{8}{15}$

Since $\alpha \in (0, \frac{\pi}{2})$, $\tan \alpha$ is positive. The angle $\alpha$ is also in the principal value branch of $\tan^{-1}$.

$\alpha = \tan^{-1} \frac{8}{15}$


Let $\beta = \sin^{-1} \frac{3}{5}$. By definition, $\sin \beta = \frac{3}{5}$.

Since $0 < \frac{3}{5} < 1$, the principal value of $\beta$ lies in the interval $(0, \frac{\pi}{2})$.

For $\beta \in (0, \frac{\pi}{2})$, $\cos \beta > 0$. We can find $\cos \beta$ using the identity $\sin^2 \beta + \cos^2 \beta = 1$:

$\cos \beta = \sqrt{1 - \sin^2 \beta} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

Now, we find $\tan \beta$:

$\tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{3/5}{4/5} = \frac{3}{4}$

Since $\beta \in (0, \frac{\pi}{2})$, $\tan \beta$ is positive. The angle $\beta$ is also in the principal value branch of $\tan^{-1}$.

$\beta = \tan^{-1} \frac{3}{4}$


Now, substitute these back into the LHS:

LHS $= \alpha + \beta = \tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$.

We use the identity $\tan^{-1} X + \tan^{-1} Y = \tan^{-1}\left(\frac{X+Y}{1-XY}\right)$, which is valid for $X > 0$, $Y > 0$, and $XY < 1$.

Here, $X = \frac{8}{15}$ and $Y = \frac{3}{4}$. Both are positive.

Check the product $XY$: $XY = \frac{8}{15} \times \frac{3}{4} = \frac{24}{60} = \frac{2}{5}$.

Since $XY = \frac{2}{5} < 1$, the identity is applicable.

Calculate $X+Y$ and $1-XY$:

$X+Y = \frac{8}{15} + \frac{3}{4} = \frac{8 \times 4 + 3 \times 15}{60} = \frac{32 + 45}{60} = \frac{77}{60}$

$1-XY = 1 - \frac{2}{5} = \frac{5-2}{5} = \frac{3}{5}$

Now, calculate $\frac{X+Y}{1-XY}$:

$\frac{X+Y}{1-XY} = \frac{77/60}{3/5} = \frac{77}{60} \times \frac{5}{3} = \frac{77 \times 5}{60 \times 3} = \frac{77 \times \cancel{5}^{1}}{\cancel{60}_{12} \times 3} = \frac{77}{36}$

So, LHS $= \tan^{-1}\left(\frac{77}{36}\right)$.

This is equal to the Right Hand Side (RHS).


Thus, $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$ is proved.

Question 5. cos-1 $\frac{4}{5}$ + cos-1 $\frac{12}{13}$ = cos-1 $\frac{33}{65}$

Answer:

To Prove: $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$.


Consider the Left Hand Side (LHS): $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$.

Let $x = \frac{4}{5}$ and $y = \frac{12}{13}$.

We use the identity $\cos^{-1} x + \cos^{-1} y = \cos^{-1}(xy - \sqrt{1-x^2}\sqrt{1-y^2})$.

This identity is valid for $x, y \in [0, 1]$ and $x+y \geq 0$. If $x, y \geq 0$, the condition $x+y \geq 0$ is always satisfied.

Check the conditions for $x = \frac{4}{5}$ and $y = \frac{12}{13}$:

$\frac{4}{5} \in [0, 1]$ and $\frac{12}{13} \in [0, 1]$

(Conditions met)

Let $A = \cos^{-1} \frac{4}{5}$ and $B = \cos^{-1} \frac{12}{13}$. Since $0 < \frac{4}{5} < 1$ and $0 < \frac{12}{13} < 1$, we have $A \in (0, \frac{\pi}{2})$ and $B \in (0, \frac{\pi}{2})$. Thus, $A+B \in (0, \pi)$, which is within the principal value branch of $\cos^{-1}$. So the identity form $\cos^{-1}(Z)$ will correctly give $A+B$.


Calculate $\sqrt{1-x^2}$ and $\sqrt{1-y^2}$:

$\sqrt{1 - x^2} = \sqrt{1 - \left(\frac{4}{5}\right)^2} = \sqrt{1 - \frac{16}{25}} = \sqrt{\frac{25-16}{25}} = \sqrt{\frac{9}{25}} = \frac{3}{5}$

$\sqrt{1 - y^2} = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{169-144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$


Now, calculate the argument of the resulting $\cos^{-1}$ using the identity:

$xy - \sqrt{1-x^2}\sqrt{1-y^2} = \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) - \left(\frac{3}{5}\right)\left(\frac{5}{13}\right)$

$= \frac{4 \times 12}{5 \times 13} - \frac{3 \times 5}{5 \times 13} = \frac{48}{65} - \frac{15}{65}$

$= \frac{48 - 15}{65} = \frac{33}{65}$


So, applying the identity:

$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1}\left(\frac{33}{65}\right)$

This is the Right Hand Side (RHS).


Thus, $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$ is proved.

Question 6. cos-1 $\frac{12}{13}$ + sin-1 $\frac{3}{5}$ = sin-1 $\frac{56}{65}$

Answer:

To Prove: $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$.


Consider the Left Hand Side (LHS): $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$.

Let $A = \cos^{-1} \frac{12}{13}$. By definition, $\cos A = \frac{12}{13}$.

Since $0 < \frac{12}{13} < 1$, the principal value of $A = \cos^{-1} \frac{12}{13}$ lies in the interval $(0, \frac{\pi}{2})$.

$\cos A = \frac{12}{13}$

For $A \in (0, \frac{\pi}{2})$, $\sin A > 0$. We find $\sin A$ using the identity $\sin^2 A + \cos^2 A = 1$:

$\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{12}{13}\right)^2} = \sqrt{1 - \frac{144}{169}} = \sqrt{\frac{169 - 144}{169}} = \sqrt{\frac{25}{169}} = \frac{5}{13}$

$\sin A = \frac{5}{13}$


Let $B = \sin^{-1} \frac{3}{5}$. By definition, $\sin B = \frac{3}{5}$.

Since $0 < \frac{3}{5} < 1$, the principal value of $B = \sin^{-1} \frac{3}{5}$ lies in the interval $(0, \frac{\pi}{2})$.

$\sin B = \frac{3}{5}$

For $B \in (0, \frac{\pi}{2})$, $\cos B > 0$. We find $\cos B$ using the identity $\sin^2 B + \cos^2 B = 1$:

$\cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

$\cos B = \frac{4}{5}$


The LHS is $A+B$. We want to show that $A+B = \sin^{-1} \frac{56}{65}$.

Let's evaluate $\sin(A+B)$ using the sum formula for sine:

$\sin(A+B) = \sin A \cos B + \cos A \sin B$

Substitute the values of $\sin A, \cos B, \cos A, \sin B$:

$\sin(A+B) = \left(\frac{5}{13}\right)\left(\frac{4}{5}\right) + \left(\frac{12}{13}\right)\left(\frac{3}{5}\right)$

$= \frac{20}{65} + \frac{36}{65}$

$= \frac{20 + 36}{65}$

$\sin(A+B) = \frac{56}{65}$


Now we need to determine if $A+B$ is equal to the principal value $\sin^{-1} \frac{56}{65}$. This requires checking if $A+B$ lies in the principal value branch of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

From the ranges of A and B:

$0 < A < \frac{\pi}{2}$

[Since $\cos A = \frac{12}{13} > 0$]

$0 < B < \frac{\pi}{2}$

[Since $\sin B = \frac{3}{5} > 0$]

Adding these inequalities:

$0 + 0 < A+B < \frac{\pi}{2} + \frac{\pi}{2}$

$0 < A+B < \pi$

We need to show that $A+B \leq \frac{\pi}{2}$. This is equivalent to showing $A \leq \frac{\pi}{2} - B$.

Since $A \in (0, \frac{\pi}{2})$ and $B \in (0, \frac{\pi}{2})$, $\frac{\pi}{2}-B \in (0, \frac{\pi}{2})$.

In the interval $(0, \frac{\pi}{2})$, the cosine function is strictly decreasing. So, $A \leq \frac{\pi}{2} - B$ is equivalent to $\cos A \geq \cos(\frac{\pi}{2} - B) = \sin B$.

We check if $\cos A \geq \sin B$:

$\frac{12}{13} \geq \frac{3}{5}$

To compare these fractions, we can cross-multiply: $12 \times 5$ vs $3 \times 13$.

$60 \geq 39$

[True]

Since $60 \geq 39$ is true, $\frac{12}{13} \geq \frac{3}{5}$ is true. Thus, $\cos A \geq \sin B$, which implies $A \leq \frac{\pi}{2} - B$, or $A+B \leq \frac{\pi}{2}$.


So we have $0 < A+B \leq \frac{\pi}{2}$. This interval is a subset of the principal value branch of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Since $\sin(A+B) = \frac{56}{65}$ and $A+B$ is in the principal value branch of $\sin^{-1}$, we can take the inverse sine of both sides:

$\sin^{-1}(\sin(A+B)) = \sin^{-1}\left(\frac{56}{65}\right)$

$A+B = \sin^{-1}\left(\frac{56}{65}\right)$

[Since $A+B \in [-\frac{\pi}{2}, \frac{\pi}{2}]$]

Substitute back $A = \cos^{-1} \frac{12}{13}$ and $B = \sin^{-1} \frac{3}{5}$:

$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$

This is the Right Hand Side (RHS).


Thus, $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$ is proved.

Question 7. tan-1 $\frac{63}{16}$ = sin-1 $\frac{5}{13}$ + cos-1 $\frac{3}{5}$

Answer:

To Prove: $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$.


Consider the Right Hand Side (RHS): $\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$.

We will convert each term into a $\tan^{-1}$ term.


Let $A = \sin^{-1} \frac{5}{13}$.

By definition, $\sin A = \frac{5}{13}$.

Since $0 < \frac{5}{13} < 1$, the principal value of $A = \sin^{-1} \frac{5}{13}$ lies in the interval $(0, \frac{\pi}{2})$.

For $A \in (0, \frac{\pi}{2})$, $\cos A > 0$. We find $\cos A$ using the identity $\sin^2 A + \cos^2 A = 1$:

$\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{169 - 25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13}$

Now, we find $\tan A$:

$\tan A = \frac{\sin A}{\cos A} = \frac{5/13}{12/13} = \frac{5}{12}$

Since $A \in (0, \frac{\pi}{2})$, $\tan A$ is positive. The angle $A$ is in the principal value branch of $\tan^{-1}$.

$A = \tan^{-1} \frac{5}{12}$


Let $B = \cos^{-1} \frac{3}{5}$.

By definition, $\cos B = \frac{3}{5}$.

Since $0 < \frac{3}{5} < 1$, the principal value of $B = \cos^{-1} \frac{3}{5}$ lies in the interval $(0, \frac{\pi}{2})$.

For $B \in (0, \frac{\pi}{2})$, $\sin B > 0$. We find $\sin B$ using the identity $\sin^2 B + \cos^2 B = 1$:

$\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$

Now, we find $\tan B$:

$\tan B = \frac{\sin B}{\cos B} = \frac{4/5}{3/5} = \frac{4}{3}$

Since $B \in (0, \frac{\pi}{2})$, $\tan B$ is positive. The angle $B$ is in the principal value branch of $\tan^{-1}$.

$B = \tan^{-1} \frac{4}{3}$


Now, substitute these back into the RHS:

RHS $= A + B = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$.

We use the identity $\tan^{-1} x + \tan^{-1} y = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$. This identity is valid for $x > 0$, $y > 0$, and $xy < 1$.

Here, $x = \frac{5}{12}$ and $y = \frac{4}{3}$. Both are positive.

Check the product $xy$: $xy = \left(\frac{5}{12}\right)\left(\frac{4}{3}\right) = \frac{20}{36} = \frac{5}{9}$.

Since $xy = \frac{5}{9} < 1$, the identity is applicable.

Calculate the argument $\frac{x+y}{1-xy}$:

$\frac{x+y}{1-xy} = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{9}} = \frac{\frac{5}{12} + \frac{16}{12}}{\frac{9-5}{9}} = \frac{\frac{21}{12}}{\frac{4}{9}}$

$= \frac{21}{12} \times \frac{9}{4} = \frac{189}{48}$

Simplify the fraction by dividing the numerator and denominator by their greatest common divisor, which is 3.

$\frac{189}{48} = \frac{189 \div 3}{48 \div 3} = \frac{63}{16}$


So, applying the identity:

RHS $= \tan^{-1}\left(\frac{63}{16}\right)$

This is equal to the Left Hand Side (LHS).


Thus, $\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$ is proved.

Prove that

Question 8. tan-1 $\sqrt{x}$ = $\frac{1}{2}$ cos-1 $\left( \frac{1-x}{1+x} \right)$ , x ∈ [0, 1]

Answer:

To Prove:

$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)$, for $x \in [0, 1]$.


Proof:

Consider the Right Hand Side (RHS) of the equation:

RHS $= \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)$

Let $x = \tan^2 \theta$ for some angle $\theta$.

Since $x \in [0, 1]$, $\sqrt{x} \in [0, 1]$. This implies $\tan \theta \in [0, 1]$.

Thus, $\theta \in [0, \frac{\pi}{4}]$. Consequently, $2\theta \in [0, \frac{\pi}{2}]$.

Substitute $x = \tan^2 \theta$ into the expression inside the inverse cosine function:

$\frac{1-x}{1+x} = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$

We use the double angle identity for cosine: $\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$.

So, $\frac{1-x}{1+x} = \cos 2\theta$.

Now, substitute this back into the RHS:

RHS $= \frac{1}{2} \cos^{-1} (\cos 2\theta)$

Since $2\theta \in [0, \frac{\pi}{2}]$, and in the interval $[0, \pi]$, $\cos^{-1}(\cos y) = y$, we have:

RHS $= \frac{1}{2} (2\theta) = \theta$

From our initial substitution, $x = \tan^2 \theta$, taking the square root of both sides gives $\sqrt{x} = \tan \theta$.

Applying the inverse tangent function to both sides, we get $\theta = \tan^{-1} \sqrt{x}$.

Therefore, RHS $= \tan^{-1} \sqrt{x}$.

This is the Left Hand Side (LHS) of the given equation.

Thus, LHS = RHS.

The identity is proven for $x \in [0, 1]$.

Question 9. cot-1 $\left( \frac{\sqrt{1+sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}} \right)$ = $\frac{x}{2}$ , x ∈ $\left( 0,\frac{\pi}{4} \right)$

Answer:

Given:

The expression is $\cot^{-1} \left( \frac{\sqrt{1+\sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}} \right)$ for $x \in \left( 0,\frac{\pi}{4} \right)$.


To Prove:

$\cot^{-1} \left( \frac{\sqrt{1+\sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}} \right) = \frac{x}{2}$.


Solution:

Consider the expression inside the inverse cotangent function:

$\frac{\sqrt{1+\sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}}$

We know that $1 = \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2}$ and $\sin x = 2 \sin \frac{x}{2} \cos \frac{x}{2}$.

Therefore,

$1+\sin x = \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2$

And

$1-\sin x = \sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2} = \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2$

Since $x \in \left( 0, \frac{\pi}{4} \right)$, it implies $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$.

For $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$, both $\sin \frac{x}{2}$ and $\cos \frac{x}{2}$ are positive. Also, $\cos \theta > \sin \theta$ for $\theta \in \left( 0, \frac{\pi}{4} \right)$, so $\cos \frac{x}{2} > \sin \frac{x}{2}$.

Thus, we can take the square roots directly:

$\sqrt{1+\sin x} = \sqrt{\left(\sin \frac{x}{2} + \cos \frac{x}{2}\right)^2} = \sin \frac{x}{2} + \cos \frac{x}{2}$

$\sqrt{1-\sin x} = \sqrt{\left(\cos \frac{x}{2} - \sin \frac{x}{2}\right)^2} = \cos \frac{x}{2} - \sin \frac{x}{2}$

Substitute these into the given expression:

$L.H.S. = \cot^{-1} \left( \frac{(\sin \frac{x}{2} + \cos \frac{x}{2}) + (\cos \frac{x}{2} - \sin \frac{x}{2})}{(\sin \frac{x}{2} + \cos \frac{x}{2}) - (\cos \frac{x}{2} - \sin \frac{x}{2})} \right)$

Simplify the numerator and the denominator:

Numerator $= \sin \frac{x}{2} + \cos \frac{x}{2} + \cos \frac{x}{2} - \sin \frac{x}{2} = 2 \cos \frac{x}{2}$

Denominator $= \sin \frac{x}{2} + \cos \frac{x}{2} - \cos \frac{x}{2} + \sin \frac{x}{2} = 2 \sin \frac{x}{2}$

So, the expression becomes:

$\frac{2 \cos \frac{x}{2}}{2 \sin \frac{x}{2}} = \frac{\cos \frac{x}{2}}{\sin \frac{x}{2}} = \cot \frac{x}{2}$

Therefore,

$L.H.S. = \cot^{-1} \left( \cot \frac{x}{2} \right)$

Since $x \in \left( 0, \frac{\pi}{4} \right)$, we have $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$. The range of the principal value branch of $\cot^{-1}(y)$ is $(0, \pi)$.

Since $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$ is within the range $(0, \pi)$, we have $\cot^{-1} \left( \cot \frac{x}{2} \right) = \frac{x}{2}$.

$L.H.S. = \frac{x}{2}$

$\cot^{-1} \left( \frac{\sqrt{1+\sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}} \right) = \frac{x}{2}$

... (i)

This is equal to the R.H.S.

Hence, the identity is proven.

Question 10. tan-1 $\left( \frac{\sqrt{1+x}\;-\;\sqrt{1-x}}{\sqrt{1+x}\;+\;\sqrt{1-x}} \right)$ = $\frac{\pi}{4}$ - $\frac{1}{2}$ cos-1 x , $-\frac{1}{\sqrt{2}}$ ≤ x ≤ 1

[Hint: Put x = cos 2θ]

Answer:

Given:

The expression is $\tan^{-1} \left( \frac{\sqrt{1+x}\;-\;\sqrt{1-x}}{\sqrt{1+x}\;+\;\sqrt{1-x}} \right)$ for $-\frac{1}{\sqrt{2}} \le x \le 1$.


To Prove:

$\tan^{-1} \left( \frac{\sqrt{1+x}\;-\;\sqrt{1-x}}{\sqrt{1+x}\;+\;\sqrt{1-x}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$.


Solution:

Let the given expression be $L.H.S.$

$L.H.S. = \tan^{-1} \left( \frac{\sqrt{1+x}\;-\;\sqrt{1-x}}{\sqrt{1+x}\;+\;\sqrt{1-x}} \right)$

Using the hint, let $x = \cos 2\theta$.

Since $-\frac{1}{\sqrt{2}} \le x \le 1$, we have $-\frac{1}{\sqrt{2}} \le \cos 2\theta \le 1$.

The principal value branch of $\cos^{-1} y$ is $[0, \pi]$. Applying $\cos^{-1}$ to the inequality (note that $\cos^{-1}$ is a decreasing function), we get:

$\cos^{-1}(1) \le \cos^{-1}(\cos 2\theta) \le \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$

$0 \le 2\theta \le \frac{3\pi}{4}$

Dividing by 2, we get the range for $\theta$:

$0 \le \theta \le \frac{3\pi}{8}$

Now substitute $x = \cos 2\theta$ into the expression:

$\sqrt{1+x} = \sqrt{1+\cos 2\theta} = \sqrt{2\cos^2 \theta} = \sqrt{2} |\cos \theta|$

$\sqrt{1-x} = \sqrt{1-\cos 2\theta} = \sqrt{2\sin^2 \theta} = \sqrt{2} |\sin \theta|$

For the range $0 \le \theta \le \frac{3\pi}{8}$, $\theta$ is in the first quadrant, where $\cos \theta \ge 0$ and $\sin \theta \ge 0$.

So, $|\cos \theta| = \cos \theta$ and $|\sin \theta| = \sin \theta$.

The expression inside the $\tan^{-1}$ becomes:

$\frac{\sqrt{2}\cos \theta - \sqrt{2}\sin \theta}{\sqrt{2}\cos \theta + \sqrt{2}\sin \theta} = \frac{\sqrt{2}(\cos \theta - \sin \theta)}{\sqrt{2}(\cos \theta + \sin \theta)} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}$

Divide the numerator and the denominator by $\cos \theta$ (since $\cos \theta \ne 0$ for $0 \le \theta \le \frac{3\pi}{8}$):

$\frac{\frac{\cos \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta}} = \frac{1 - \tan \theta}{1 + \tan \theta}$

Using the tangent addition formula $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$ and knowing that $\tan \frac{\pi}{4} = 1$, we have:

$\frac{1 - \tan \theta}{1 + \tan \theta} = \frac{\tan \frac{\pi}{4} - \tan \theta}{1 + \tan \frac{\pi}{4} \tan \theta} = \tan \left(\frac{\pi}{4} - \theta\right)$

Now substitute this back into the $L.H.S.$:

$L.H.S. = \tan^{-1} \left(\tan \left(\frac{\pi}{4} - \theta\right)\right)$

We need to check if the argument $\frac{\pi}{4} - \theta$ is in the principal value range of $\tan^{-1}$, which is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

From $0 \le \theta \le \frac{3\pi}{8}$, we have $-\frac{3\pi}{8} \le -\theta \le 0$.

Adding $\frac{\pi}{4}$ to all parts:

$\frac{\pi}{4} - \frac{3\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4} + 0$

$\frac{2\pi - 3\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4}$

$-\frac{\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4}$

The interval $[-\frac{\pi}{8}, \frac{\pi}{4}]$ is within the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Therefore, $\tan^{-1} \left(\tan \left(\frac{\pi}{4} - \theta\right)\right) = \frac{\pi}{4} - \theta$.

$L.H.S. = \frac{\pi}{4} - \theta$

Now, we substitute back $\theta$ in terms of $x$. Since $x = \cos 2\theta$, we have $2\theta = \cos^{-1} x$.

$\theta = \frac{1}{2} \cos^{-1} x$

$L.H.S. = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$

This is equal to the $R.H.S.$

Hence, the identity is proven.

Solve the following equations:

Question 11. 2tan–1 (cos x) = tan–1 (2 cosec x)

Answer:

Given:

The equation is $2\tan^{-1}(\cos x) = \tan^{-1}(2 \text{ cosec } x)$.


To Solve:

Find the value(s) of $x$ that satisfy the given equation.


Solution:

The given equation is:

$2\tan^{-1}(\cos x) = \tan^{-1}(2 \text{ cosec } x)$

... (i)

We use the formula $2\tan^{-1} y = \tan^{-1} \left(\frac{2y}{1-y^2}\right)$, provided $|y| < 1$. Here $y = \cos x$.

Applying this formula to the left-hand side ($L.H.S.$) of equation (i):

$L.H.S. = \tan^{-1} \left(\frac{2\cos x}{1-\cos^2 x}\right)$

Using the identity $1-\cos^2 x = \sin^2 x$, we get:

$L.H.S. = \tan^{-1} \left(\frac{2\cos x}{\sin^2 x}\right)$

Rewrite the term inside the $\tan^{-1}$ function:

$\frac{2\cos x}{\sin^2 x} = \frac{2\cos x}{\sin x \cdot \sin x} = 2 \frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} = 2 \cot x \cdot \text{cosec } x$

So, the equation becomes:

$\tan^{-1}(2 \cot x \text{ cosec } x) = \tan^{-1}(2 \text{ cosec } x)$

If $\tan^{-1} A = \tan^{-1} B$, then $A=B$. Therefore, we can equate the arguments, provided they are defined:

$2 \cot x \text{ cosec } x = 2 \text{ cosec } x$

Subtract $2 \text{ cosec } x$ from both sides:

$2 \cot x \text{ cosec } x - 2 \text{ cosec } x = 0$

Factor out $2 \text{ cosec } x$:

$2 \text{ cosec } x (\cot x - 1) = 0$

This equation is satisfied if either $2 \text{ cosec } x = 0$ or $\cot x - 1 = 0$.

Case 1: $2 \text{ cosec } x = 0$

$\text{cosec } x = 0$

Since $\text{cosec } x = \frac{1}{\sin x}$, this means $\frac{1}{\sin x} = 0$, which is impossible for any real value of $x$. So, there are no solutions from this case.

Case 2: $\cot x - 1 = 0$

$\cot x = 1$

The general solution for $\cot x = 1$ is $x = n\pi + \frac{\pi}{4}$, where $n$ is an integer ($n \in \mathbb{Z}$).

We need to verify if these solutions are valid for the original equation. The formula for $2\tan^{-1}y$ requires $|y| < 1$, i.e., $|\cos x| < 1$. Also, $\tan^{-1}(2 \text{ cosec } x)$ requires $\text{cosec } x$ to be defined, which means $\sin x \ne 0$.

For $x = n\pi + \frac{\pi}{4}$:

$\cos x = \cos(n\pi + \frac{\pi}{4}) = \begin{cases} \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} & \text{if } n \text{ is even} \\ \cos(\pi + \frac{\pi}{4}) = -\cos(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} & \text{if } n \text{ is odd} \end{cases}$

In both cases, $|\cos x| = \left|\pm\frac{1}{\sqrt{2}}\right| = \frac{1}{\sqrt{2}}$, which is less than 1. So, the condition $|\cos x| < 1$ is satisfied.

$\sin x = \sin(n\pi + \frac{\pi}{4}) = \begin{cases} \sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} & \text{if } n \text{ is even} \\ \sin(\pi + \frac{\pi}{4}) = -\sin(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}} & \text{if } n \text{ is odd} \end{cases}$

In both cases, $\sin x \ne 0$, so $\text{cosec } x$ is defined.

Thus, the solutions $x = n\pi + \frac{\pi}{4}$ for $n \in \mathbb{Z}$ are valid.


The solution to the equation is $x = n\pi + \frac{\pi}{4}$, where $n$ is any integer.

Question 12. tan-1 $\frac{1 - x}{1 + x}$ = $\frac{1}{2}$ tan-1 x, (x > 0)

Answer:

Given:

The equation is $\tan^{-1} \left( \frac{1 - x}{1 + x} \right) = \frac{1}{2} \tan^{-1} x$, with the condition $x > 0$.


To Solve:

Find the value of $x$ that satisfies the given equation.


Solution:

The given equation is:

$\tan^{-1} \left( \frac{1 - x}{1 + x} \right) = \frac{1}{2} \tan^{-1} x$

... (i)

We use the identity $\tan^{-1} A - \tan^{-1} B = \tan^{-1}\left(\frac{A-B}{1+AB}\right)$. Setting $A=1$ and $B=x$, the left-hand side ($L.H.S.$) can be written as:

$L.H.S. = \tan^{-1} 1 - \tan^{-1} x$

We know that $\tan^{-1} 1 = \frac{\pi}{4}$.

$L.H.S. = \frac{\pi}{4} - \tan^{-1} x$

Substitute this into equation (i):

$\frac{\pi}{4} - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$

Add $\tan^{-1} x$ to both sides:

$\frac{\pi}{4} = \frac{1}{2} \tan^{-1} x + \tan^{-1} x$

Combine the terms on the right-hand side:

$\frac{\pi}{4} = \left(\frac{1}{2} + 1\right) \tan^{-1} x$

$\frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$

Multiply both sides by $\frac{2}{3}$ to solve for $\tan^{-1} x$:

$\tan^{-1} x = \frac{\pi}{4} \times \frac{2}{3}$

$\tan^{-1} x = \frac{2\pi}{12}$

$\tan^{-1} x = \frac{\pi}{6}$

Now, take the tangent of both sides to find $x$:

$x = \tan \left(\frac{\pi}{6}\right)$

We know that $\tan \left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$.

$x = \frac{1}{\sqrt{3}}$

... (ii)

We need to check if this solution satisfies the given condition $x > 0$. Since $\frac{1}{\sqrt{3}} > 0$, the solution is valid.

The identity $\tan^{-1} A - \tan^{-1} B = \tan^{-1}\left(\frac{A-B}{1+AB}\right)$ is valid when $AB > -1$. Here $A=1$ and $B=x = \frac{1}{\sqrt{3}}$. $AB = 1 \times \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}}$. Since $\frac{1}{\sqrt{3}} > -1$, the identity used is valid for this solution.


The solution to the equation is $x = \frac{1}{\sqrt{3}}$.

Question 13. sin (tan–1 x), | x | < 1 is equal to

(A) $\frac{x}{\sqrt{1-x^{2}}}$

(B) $\frac{1}{\sqrt{1-x^{2}}}$

(C) $\frac{1}{\sqrt{1+x^{2}}}$

(D) $\frac{x}{\sqrt{1+x^{2}}}$

Answer:

Given:

The expression $\sin (\tan^{-1} x)$, with the condition $|x| < 1$. The options are provided.


To Find:

The expression that is equal to $\sin (\tan^{-1} x)$ from the given options.


Solution:

Let $\theta = \tan^{-1} x$.

By the definition of the inverse tangent function, this means $\tan \theta = x$.

Since $|x| < 1$, the principal value of $\tan^{-1} x$ lies in the interval $(-\frac{\pi}{4}, \frac{\pi}{4})$. Thus, $\theta \in (-\frac{\pi}{4}, \frac{\pi}{4})$.

We need to find $\sin \theta$ where $\tan \theta = x$.

We can relate $\sin \theta$ and $\tan \theta$ using trigonometric identities.

Substitute $\tan \theta = x$ into the identity:

$\sin^2 \theta = \frac{x^2}{1 + x^2}$

Taking the square root of both sides:

$\sin \theta = \pm \sqrt{\frac{x^2}{1 + x^2}} = \pm \frac{|x|}{\sqrt{1 + x^2}}$

We need to determine the correct sign. Since $\theta \in (-\frac{\pi}{4}, \frac{\pi}{4})$, $\theta$ is in the first or fourth quadrant.

  • If $x > 0$, then $\tan \theta = x > 0$, which implies $\theta \in (0, \frac{\pi}{4})$. In the first quadrant, $\sin \theta$ is positive. So, $\sin \theta = \frac{|x|}{\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$ (since $x>0, |x|=x$).
  • If $x < 0$, then $\tan \theta = x < 0$, which implies $\theta \in (-\frac{\pi}{4}, 0)$. In the fourth quadrant, $\sin \theta$ is negative. So, $\sin \theta = -\frac{|x|}{\sqrt{1 + x^2}}$. Since $x < 0$, $|x| = -x$. Therefore, $\sin \theta = -\frac{-x}{\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$.
  • If $x = 0$, then $\tan \theta = 0$, which implies $\theta = 0$. $\sin \theta = \sin 0 = 0$. The formula $\frac{x}{\sqrt{1+x^2}} = \frac{0}{\sqrt{1+0^2}} = 0$, which matches.

In all cases where $|x| < 1$, we find that $\sin \theta = \frac{x}{\sqrt{1 + x^2}}$.

Substituting back $\theta = \tan^{-1} x$:

$\sin (\tan^{-1} x) = \frac{x}{\sqrt{1 + x^2}}$

... (i)

Comparing this result with the given options:

(A) $\frac{x}{\sqrt{1-x^{2}}}$

(B) $\frac{1}{\sqrt{1-x^{2}}}$

(C) $\frac{1}{\sqrt{1+x^{2}}}$

(D) $\frac{x}{\sqrt{1+x^{2}}}$

The result matches option (D).


The correct option is (D).

Question 14. sin–1 (1 – x) – 2 sin–1 x = $\frac{\pi}{2}$ then x is equal to

(A) 0, $\frac{1}{2}$

(B) 1, $\frac{1}{2}$

(C) 0

(D) $\frac{1}{2}$

Answer:

Given:

The equation is $\sin^{-1} (1 – x) – 2 \sin^{–1} x = \frac{\pi}{2}$.


To Solve:

Find the value(s) of $x$ that satisfy the given equation.


Solution:

The given equation is:

$\sin^{-1} (1 – x) – 2 \sin^{–1} x = \frac{\pi}{2}$

... (i)

First, let's consider the domain of the inverse sine function. For $\sin^{-1} z$ to be defined, we must have $-1 \le z \le 1$.

For $\sin^{-1}(1-x)$: $-1 \le 1-x \le 1$. Subtracting 1 from all parts gives $-2 \le -x \le 0$. Multiplying by $-1$ and reversing the inequalities gives $0 \le x \le 2$.

For $\sin^{-1}x$: $-1 \le x \le 1$.

For both inverse sine functions to be defined, $x$ must be in the intersection of the two domains: $[0, 2] \cap [-1, 1] = [0, 1]$. So, any valid solution must be in the interval $[0, 1]$.

Now, let's solve the equation. Rearrange equation (i):

$\sin^{-1} (1 – x) = \frac{\pi}{2} + 2 \sin^{–1} x$

Let $y = \sin^{-1} x$. The equation becomes:

$\sin^{-1} (1 – x) = \frac{\pi}{2} + 2y$

Taking the sine of both sides:

$\sin(\sin^{-1} (1 – x)) = \sin\left(\frac{\pi}{2} + 2y\right)$

Using the identity $\sin(\sin^{-1} z) = z$ (provided $z$ is in the domain of $\sin^{-1}$) and $\sin\left(\frac{\pi}{2} + \theta\right) = \cos \theta$, we get:

$1 - x = \cos(2y)$

Using the double angle identity for cosine, $\cos(2y) = 1 - 2\sin^2 y$. Since $y = \sin^{-1} x$, we have $\sin y = x$. Substituting this into the identity:

$\cos(2y) = 1 - 2x^2$

So, the equation becomes:

$1 - x = 1 - 2x^2$

Subtract 1 from both sides:

$-x = -2x^2$

Rearrange into a quadratic equation:

$2x^2 - x = 0$

Factor out $x$:

$x(2x - 1) = 0$

This gives two possible solutions: $x = 0$ or $2x - 1 = 0 \implies x = \frac{1}{2}$.

These are potential solutions obtained from the algebraic simplification. We must check if they satisfy the original equation (i) and lie within the domain $[0, 1]$. Both $x=0$ and $x=\frac{1}{2}$ are in the domain $[0, 1]$.

Verification:

Check $x = 0$ in equation (i):

$L.H.S. = \sin^{-1} (1 – 0) – 2 \sin^{–1} 0 = \sin^{-1} 1 – 2 \sin^{–1} 0 = \frac{\pi}{2} – 2(0) = \frac{\pi}{2}$

$R.H.S. = \frac{\pi}{2}$

Since $L.H.S. = R.H.S.$, $x = 0$ is a solution.

Check $x = \frac{1}{2}$ in equation (i):

$L.H.S. = \sin^{-1} \left(1 – \frac{1}{2}\right) – 2 \sin^{–1} \frac{1}{2} = \sin^{-1} \frac{1}{2} – 2 \sin^{–1} \frac{1}{2}$

Using the principal values, $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$.

$L.H.S. = \frac{\pi}{6} – 2 \left(\frac{\pi}{6}\right) = \frac{\pi}{6} – \frac{\pi}{3} = \frac{\pi - 2\pi}{6} = -\frac{\pi}{6}$

$R.H.S. = \frac{\pi}{2}$

Since $L.H.S. \ne R.H.S.$, $x = \frac{1}{2}$ is not a solution.

Thus, the only solution to the equation is $x = 0$.


The solution is $x = 0$, which corresponds to option (C).