Menu Top
Non-Rationalised NCERT Books Solution
6th 7th 8th 9th 10th 11th 12th

Class 12th Chapters
1. Relations and Functions 2. Inverse Trigonometric Functions 3. Matrices
4. Determinants 5. Continuity and Differentiability 6. Application of Derivatives
7. Integrals 8. Application of Integrals 9. Differential Equations
10. Vector Algebra 11. Three Dimensional Geometry 12. Linear Programming
13. Probability

Content On This Page
Example 1 & 2 (Before Exercise 2.1) Exercise 2.1 Example 3 to 8 (Before Exercise 2.2)
Exercise 2.2 Example 9 to 13 - Miscellaneous Examples Miscellaneous Exercise on Chapter 2


Chapter 2 Inverse Trigonometric Functions

Welcome to the solutions for Chapter 2: Inverse Trigonometric Functions. Having explored trigonometric functions that relate angles to side ratios in Chapter 1, we now investigate their inverses. The core idea of an inverse function is to reverse the mapping – given the trigonometric ratio (the output value), we want to find the corresponding angle (the input value). However, a fundamental challenge arises immediately: the standard trigonometric functions ($\sin x$, $\cos x$, $\tan x$, etc.) are inherently periodic. For example, consider the equation $\sin x = \frac{1}{2}$. There are infinitely many angles $x$ that satisfy this condition ($x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, -\frac{7\pi}{6}, \dots$). This periodic behavior means that trigonometric functions, when considered over their entire domains (e.g., all real numbers for sine and cosine), are many-to-one, not one-to-one. A true inverse function can only exist for functions that are bijective (both one-one/injective and onto/surjective). Since trigonometric functions fail the crucial one-one requirement over their natural domains, we cannot define a unique, well-behaved inverse function across their entire input space without modification.

To resolve this, the mathematical community employs a standard convention: we restrict the domain of each trigonometric function to a specific interval where the function is one-one and still covers its full range of output values. By limiting the input angles to these carefully chosen intervals, we create restricted versions of the trigonometric functions that are bijective, thus allowing for the definition of unique inverse functions. These restricted ranges for the output of the inverse functions are known as the principal value branches. Understanding and strictly adhering to these principal value branches is absolutely paramount when working with inverse trigonometric functions, denoted as $\arcsin x$ or $\sin^{-1}x$, $\arccos x$ or $\cos^{-1}x$, $\arctan x$ or $\tan^{-1}x$, etc. (It's important to note that the notation $\sin^{-1}x$ means the inverse function, not $\frac{1}{\sin x}$). These inverse functions are essential tools for solving trigonometric equations, simplifying certain algebraic expressions, and are indispensable in calculus, particularly for integration techniques and finding derivatives of functions involving inverse trigonometric forms. This chapter meticulously covers their definitions, the crucial concept of principal values, their graphs, and their numerous properties.

The solutions formally define the six inverse trigonometric functions, explicitly stating their domains and, most importantly, their respective principal value branches (ranges):

A key skill demonstrated is finding the principal value of inverse trigonometric expressions, which means finding the unique output angle that lies within the defined principal value branch. For example, solutions show calculating $\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ (which is in $[-\frac{\pi}{2}, \frac{\pi}{2}]$) or $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$ (which is in $[0, \pi]$).

A major focus lies on proving and applying the various properties of inverse trigonometric functions. These properties are essential for manipulation and simplification. Key categories covered include:

The solutions extensively guide students in simplifying complex expressions involving compositions of trigonometric and inverse trigonometric functions. This often requires strategic application of the properties mentioned above, sometimes coupled with algebraic manipulation or clever trigonometric substitutions (e.g., substituting $x = \sin\theta$, $x = \tan\theta$, or $x = \sec\theta$ based on the form of the expression, like $\sqrt{1-x^2}$ or $1+x^2$). Furthermore, methods for solving equations that contain inverse trigonometric functions are demonstrated. This involves applying properties to simplify the equation, isolating the variable, and critically, always checking for extraneous solutions that might arise during the algebraic process but fall outside the valid domains of the involved inverse functions. These techniques are fundamental for advanced calculus and related fields.



Example 1 & 2 (Before Exercise 2.1)

Example 1: Find the principal value of sin–1 $\left( \frac{1}{\sqrt{2}} \right)$

Answer:

To Find:

The principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.


Solution:

Let $y = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

By definition of the inverse sine function, this implies:

$\sin(y) = \frac{1}{\sqrt{2}}$

We know that the range of the principal value branch of $\sin^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We need to find the angle $y$ within this interval such that $\sin(y) = \frac{1}{\sqrt{2}}$.

We recall from trigonometry that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

Since $\frac{\pi}{4}$ lies in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, it is the principal value.

Therefore, $y = \frac{\pi}{4}$.


The principal value of $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is $\mathbf{\frac{\pi}{4}}$.

Example 2: Find the principal value of cot–1 $\left( \frac{-1}{\sqrt{3}} \right)$

Answer:

To Find:

The principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.


Solution:

Let $y = \cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$.

By the definition of the inverse cotangent function, this implies:

$\cot(y) = -\frac{1}{\sqrt{3}}$

We know that the range of the principal value branch of $\cot^{-1}(x)$ is $(0, \pi)$.

We need to find the angle $y$ within the interval $(0, \pi)$ such that $\cot(y) = -\frac{1}{\sqrt{3}}$.

First, let's find the angle $\alpha$ in the first quadrant $(0, \frac{\pi}{2})$ such that $\cot(\alpha) = \frac{1}{\sqrt{3}}$.

$\cot(\alpha) = \frac{1}{\sqrt{3}}$ implies $\tan(\alpha) = \sqrt{3}$.

The angle for which $\tan(\alpha) = \sqrt{3}$ is $\alpha = \frac{\pi}{3}$.

Since $\cot(y)$ is negative $\left(-\frac{1}{\sqrt{3}}\right)$, and the principal value range is $(0, \pi)$, the angle $y$ must lie in the second quadrant (where cotangent is negative).

The angle in the second quadrant with reference angle $\alpha = \frac{\pi}{3}$ is given by:

$y = \pi - \alpha$

$y = \pi - \frac{\pi}{3}$

$y = \frac{3\pi - \pi}{3} = \frac{2\pi}{3}$

We check if this value lies in the principal value range $(0, \pi)$. Since $0 < \frac{2\pi}{3} < \pi$, it does.

Therefore, the principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ is $\frac{2\pi}{3}$.


The principal value of $\cot^{-1}\left(\frac{-1}{\sqrt{3}}\right)$ is $\mathbf{\frac{2\pi}{3}}$.



Exercise 2.1

Find the principal values of the following:

Question 1. sin-1 $\left( -\frac{1}{2} \right)$

Answer:

To Find:

The principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$.


Solution:

Let $y = \sin^{-1}\left(-\frac{1}{2}\right)$.

By the definition of the inverse sine function, this means:

$\sin(y) = -\frac{1}{2}$

The principal value branch of $\sin^{-1}(x)$ has the range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We need to find the angle $y$ within this interval such that $\sin(y) = -\frac{1}{2}$.

We know that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Since $\sin(y)$ is negative and $y$ must be in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, $y$ must be in the fourth quadrant part of this interval, i.e., $y \in \left[-\frac{\pi}{2}, 0\right)$.

The angle in this range whose sine is $-\frac{1}{2}$ is related to $\frac{\pi}{6}$ by $\sin(-x) = -\sin(x)$.

So, $\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}$.

The value $y = -\frac{\pi}{6}$ lies in the principal value range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore, the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\frac{\pi}{6}$.


The principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $\mathbf{-\frac{\pi}{6}}$.

Question 2. cos-1 $\left( \frac{\sqrt{3}}{2} \right)$

Answer:

To Find:

The principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$.


Solution:

Let $y = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$.

By the definition of the inverse cosine function, this means:

$\cos(y) = \frac{\sqrt{3}}{2}$

The principal value branch of $\cos^{-1}(x)$ has the range $[0, \pi]$.

We need to find the angle $y$ within this interval such that $\cos(y) = \frac{\sqrt{3}}{2}$.

We recall from trigonometry that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

The angle $y = \frac{\pi}{6}$ lies in the principal value range $[0, \pi]$.

Therefore, the principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.


The principal value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\mathbf{\frac{\pi}{6}}$.

Question 3. cosec-1 (2)

Answer:

To Find:

The principal value of $\text{cosec}^{-1}(2)$.


Solution:

Let $y = \text{cosec}^{-1}(2)$.

By the definition of the inverse cosecant function, this means:

$\text{cosec}(y) = 2$

Since $\text{cosec}(y) = \frac{1}{\sin(y)}$, we have:

$\frac{1}{\sin(y)} = 2$

$\implies \sin(y) = \frac{1}{2}$

The principal value branch of $\text{cosec}^{-1}(x)$ has the range $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$.

We need to find the angle $y$ within this range such that $\sin(y) = \frac{1}{2}$.

We know from trigonometry that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$.

The angle $y = \frac{\pi}{6}$ lies in the interval $\left(0, \frac{\pi}{2}\right]$, which is part of the principal value range for $\text{cosec}^{-1}$.

Therefore, the principal value of $\text{cosec}^{-1}(2)$ is $\frac{\pi}{6}$.


The principal value of $\text{cosec}^{-1}(2)$ is $\mathbf{\frac{\pi}{6}}$.

Question 4. tan-1 $(-\sqrt{3})$

Answer:

To Find:

The principal value of $\tan^{-1}(-\sqrt{3})$.


Solution:

Let $y = \tan^{-1}(-\sqrt{3})$.

By the definition of the inverse tangent function, this means:

$\tan(y) = -\sqrt{3}$

The principal value branch of $\tan^{-1}(x)$ has the range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We need to find the angle $y$ within this interval such that $\tan(y) = -\sqrt{3}$.

First, consider the positive value. We know that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.

Since $\tan(y)$ is negative and $y$ must be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the angle $y$ must lie in the interval $\left(-\frac{\pi}{2}, 0\right)$.

We use the property $\tan(-x) = -\tan(x)$.

So, $\tan\left(-\frac{\pi}{3}\right) = -\tan\left(\frac{\pi}{3}\right) = -\sqrt{3}$.

The angle $y = -\frac{\pi}{3}$ lies within the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, the principal value of $\tan^{-1}(-\sqrt{3})$ is $-\frac{\pi}{3}$.


The principal value of $\tan^{-1}(-\sqrt{3})$ is $\mathbf{-\frac{\pi}{3}}$.

Question 5. cos-1 $\left( -\frac{1}{2} \right)$

Answer:

To Find:

The principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$.


Solution:

Let $y = \cos^{-1}\left(-\frac{1}{2}\right)$.

By the definition of the inverse cosine function, this means:

$\cos(y) = -\frac{1}{2}$

The principal value branch of $\cos^{-1}(x)$ has the range $[0, \pi]$.

We need to find the angle $y$ within this interval such that $\cos(y) = -\frac{1}{2}$.

First, let's find the reference angle $\alpha$ in the first quadrant $[0, \frac{\pi}{2}]$ such that $\cos(\alpha) = \frac{1}{2}$. We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. So, the reference angle is $\alpha = \frac{\pi}{3}$.

Since $\cos(y)$ is negative ($-\frac{1}{2}$) and the principal value range is $[0, \pi]$, the angle $y$ must lie in the second quadrant ($\frac{\pi}{2} < y \le \pi$), where cosine is negative.

The angle in the second quadrant with reference angle $\alpha = \frac{\pi}{3}$ is given by:

$y = \pi - \alpha$

$y = \pi - \frac{\pi}{3}$

$y = \frac{3\pi - \pi}{3} = \frac{2\pi}{3}$

The angle $y = \frac{2\pi}{3}$ lies within the principal value range $[0, \pi]$.

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\frac{2\pi}{3}$.


The principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$ is $\mathbf{\frac{2\pi}{3}}$.

Question 6. tan-1 (-1)

Answer:

To Find:

The principal value of $\tan^{-1}(-1)$.


Solution:

Let $y = \tan^{-1}(-1)$.

By the definition of the inverse tangent function, this means:

$\tan(y) = -1$

The principal value branch of $\tan^{-1}(x)$ has the range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We need to find the angle $y$ within this interval such that $\tan(y) = -1$.

First, consider the positive value. We know that $\tan\left(\frac{\pi}{4}\right) = 1$.

Since $\tan(y)$ is negative and $y$ must be in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the angle $y$ must lie in the interval $\left(-\frac{\pi}{2}, 0\right)$.

We use the property $\tan(-x) = -\tan(x)$.

So, $\tan\left(-\frac{\pi}{4}\right) = -\tan\left(\frac{\pi}{4}\right) = -1$.

The angle $y = -\frac{\pi}{4}$ lies within the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.


The principal value of $\tan^{-1}(-1)$ is $\mathbf{-\frac{\pi}{4}}$.

Question 7. sec-1 $\left( \frac{2}{\sqrt{3}} \right)$

Answer:

To Find:

The principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$.


Solution:

Let $y = \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$.

By the definition of the inverse secant function, this means:

$\sec(y) = \frac{2}{\sqrt{3}}$

Since $\sec(y) = \frac{1}{\cos(y)}$, we have:

$\frac{1}{\cos(y)} = \frac{2}{\sqrt{3}}$

$\implies \cos(y) = \frac{\sqrt{3}}{2}$

The principal value branch of $\sec^{-1}(x)$ has the range $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$.

We need to find the angle $y$ within this range such that $\cos(y) = \frac{\sqrt{3}}{2}$.

We know from trigonometry that $\cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.

The angle $y = \frac{\pi}{6}$ lies in the interval $\left[0, \frac{\pi}{2}\right)$, which is part of the principal value range for $\sec^{-1}$.

Therefore, the principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.


The principal value of $\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\mathbf{\frac{\pi}{6}}$.

Question 8. cot-1($\sqrt{3}$)

Answer:

To Find:

The principal value of $\cot^{-1}(\sqrt{3})$.


Solution:

Let $y = \cot^{-1}(\sqrt{3})$.

By the definition of the inverse cotangent function, this means:

$\cot(y) = \sqrt{3}$

The principal value branch of $\cot^{-1}(x)$ has the range $(0, \pi)$.

We need to find the angle $y$ within this interval such that $\cot(y) = \sqrt{3}$.

We can think in terms of tangent: $\cot(y) = \sqrt{3}$ implies $\tan(y) = \frac{1}{\sqrt{3}}$.

We know from trigonometry that $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, which means $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$.

The angle $y = \frac{\pi}{6}$ lies within the principal value range $(0, \pi)$.

Therefore, the principal value of $\cot^{-1}(\sqrt{3})$ is $\frac{\pi}{6}$.


The principal value of $\cot^{-1}(\sqrt{3})$ is $\mathbf{\frac{\pi}{6}}$.

Question 9. cos-1 $\left( -\frac{1}{\sqrt{2}} \right)$

Answer:

To Find:

The principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.


Solution:

Let $y = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$.

By the definition of the inverse cosine function, this means:

$\cos(y) = -\frac{1}{\sqrt{2}}$

The principal value branch of $\cos^{-1}(x)$ has the range $[0, \pi]$.

We need to find the angle $y$ within this interval such that $\cos(y) = -\frac{1}{\sqrt{2}}$.

First, let's find the reference angle $\alpha$ in the first quadrant $[0, \frac{\pi}{2}]$ such that $\cos(\alpha) = \frac{1}{\sqrt{2}}$. We know that $\cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$. So, the reference angle is $\alpha = \frac{\pi}{4}$.

Since $\cos(y)$ is negative ($-\frac{1}{\sqrt{2}}$) and the principal value range is $[0, \pi]$, the angle $y$ must lie in the second quadrant ($\frac{\pi}{2} < y \le \pi$), where cosine is negative.

The angle in the second quadrant with reference angle $\alpha = \frac{\pi}{4}$ is given by:

$y = \pi - \alpha$

$y = \pi - \frac{\pi}{4}$

$y = \frac{4\pi - \pi}{4} = \frac{3\pi}{4}$

The angle $y = \frac{3\pi}{4}$ lies within the principal value range $[0, \pi]$.

Therefore, the principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\frac{3\pi}{4}$.


The principal value of $\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right)$ is $\mathbf{\frac{3\pi}{4}}$.

Question 10. cosec-1 $(-\sqrt{2})$

Answer:

To Find:

The principal value of $\text{cosec}^{-1}(-\sqrt{2})$.


Solution:

Let $y = \text{cosec}^{-1}(-\sqrt{2})$.

By the definition of the inverse cosecant function, this means:

$\text{cosec}(y) = -\sqrt{2}$

Since $\text{cosec}(y) = \frac{1}{\sin(y)}$, we have:

$\frac{1}{\sin(y)} = -\sqrt{2}$

$\implies \sin(y) = -\frac{1}{\sqrt{2}}$

The principal value branch of $\text{cosec}^{-1}(x)$ has the range $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$.

We need to find the angle $y$ within this range such that $\sin(y) = -\frac{1}{\sqrt{2}}$.

First, consider the positive value. We know that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

Since $\sin(y)$ is negative and $y$ must be in the principal value range $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$, the angle $y$ must lie in the interval $\left[-\frac{\pi}{2}, 0\right)$.

We use the property $\sin(-x) = -\sin(x)$.

So, $\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$.

The angle $y = -\frac{\pi}{4}$ lies within the principal value range $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$. Specifically, it is in $\left[-\frac{\pi}{2}, 0\right)$.

Therefore, the principal value of $\text{cosec}^{-1}(-\sqrt{2})$ is $-\frac{\pi}{4}$.


The principal value of $\text{cosec}^{-1}(-\sqrt{2})$ is $\mathbf{-\frac{\pi}{4}}$.

Find the values of the following:

Question 11. tan-1(1) + cos-1 $\left( -\frac{1}{2} \right)$ + sin-1 $\left( -\frac{1}{2} \right)$

Answer:

To Find:

The value of the expression $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$.


Solution:

We need to find the principal values of each term in the expression and then add them.

Step 1: Find the principal value of $\tan^{-1}(1)$.

Let $y_1 = \tan^{-1}(1)$. Then $\tan(y_1) = 1$.

The range of the principal value branch of $\tan^{-1}(x)$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We know that $\tan\left(\frac{\pi}{4}\right) = 1$.

Since $\frac{\pi}{4}$ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$\tan^{-1}(1) = \frac{\pi}{4}$.


Step 2: Find the principal value of $\cos^{-1}\left(-\frac{1}{2}\right)$.

Let $y_2 = \cos^{-1}\left(-\frac{1}{2}\right)$. Then $\cos(y_2) = -\frac{1}{2}$.

The range of the principal value branch of $\cos^{-1}(x)$ is $[0, \pi]$.

We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. Since $\cos(y_2)$ is negative, $y_2$ must lie in the second quadrant.

The angle in the second quadrant corresponding to the reference angle $\frac{\pi}{3}$ is $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$.

Since $\frac{2\pi}{3}$ lies in the interval $[0, \pi]$,

$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$.


Step 3: Find the principal value of $\sin^{-1}\left(-\frac{1}{2}\right)$.

Let $y_3 = \sin^{-1}\left(-\frac{1}{2}\right)$. Then $\sin(y_3) = -\frac{1}{2}$.

The range of the principal value branch of $\sin^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We know that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$. Since $\sin(y_3)$ is negative, $y_3$ must lie in the interval $\left[-\frac{\pi}{2}, 0\right]$.

Using $\sin(-x) = -\sin(x)$, we have $\sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2}$.

Since $-\frac{\pi}{6}$ lies in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$.


Step 4: Add the principal values.

The required value is $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$

$= \frac{\pi}{4} + \frac{2\pi}{3} + \left(-\frac{\pi}{6}\right)$

$= \frac{\pi}{4} + \frac{2\pi}{3} - \frac{\pi}{6}$

To add these fractions, we find a common denominator, which is 12.

$= \frac{\pi \times 3}{4 \times 3} + \frac{2\pi \times 4}{3 \times 4} - \frac{\pi \times 2}{6 \times 2}$

$= \frac{3\pi}{12} + \frac{8\pi}{12} - \frac{2\pi}{12}$

$= \frac{3\pi + 8\pi - 2\pi}{12}$

$= \frac{11\pi - 2\pi}{12}$

$= \frac{9\pi}{12}$

Simplifying the fraction:

$= \frac{3\pi}{4}$


Therefore, the value of $\tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right)$ is $\mathbf{\frac{3\pi}{4}}$.

Question 12. cos-1 $\left( \frac{1}{2} \right)$ + 2 sin-1 $\left( \frac{1}{2} \right)$

Answer:

To Find:

The value of the expression $\cos^{-1}\left(\frac{1}{2}\right) + 2 \sin^{-1}\left(\frac{1}{2}\right)$.


Solution:

We need to find the principal values of each term in the expression and then combine them.

Step 1: Find the principal value of $\cos^{-1}\left(\frac{1}{2}\right)$.

Let $y_1 = \cos^{-1}\left(\frac{1}{2}\right)$. Then $\cos(y_1) = \frac{1}{2}$.

The range of the principal value branch of $\cos^{-1}(x)$ is $[0, \pi]$.

We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$.

Since $\frac{\pi}{3}$ lies in the interval $[0, \pi]$,

$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$.


Step 2: Find the principal value of $\sin^{-1}\left(\frac{1}{2}\right)$.

Let $y_2 = \sin^{-1}\left(\frac{1}{2}\right)$. Then $\sin(y_2) = \frac{1}{2}$.

The range of the principal value branch of $\sin^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We know that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$.

Since $\frac{\pi}{6}$ lies in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$.


Step 3: Calculate the value of the expression.

The required value is $\cos^{-1}\left(\frac{1}{2}\right) + 2 \sin^{-1}\left(\frac{1}{2}\right)$

$= \frac{\pi}{3} + 2 \times \left(\frac{\pi}{6}\right)$

$= \frac{\pi}{3} + \frac{2\pi}{6}$

Simplify the second term:

$= \frac{\pi}{3} + \frac{\pi}{3}$

$= \frac{\pi + \pi}{3}$

$= \frac{2\pi}{3}$


Therefore, the value of $\cos^{-1}\left(\frac{1}{2}\right) + 2 \sin^{-1}\left(\frac{1}{2}\right)$ is $\mathbf{\frac{2\pi}{3}}$.

Question 13. If sin-1 x = y, then

(A) 0 ≤ y ≤ π

(B) $-\frac{\pi}{2}$ ≤ y ≤ $\frac{\pi}{2}$

(C) 0 < y < π

(D) $-\frac{\pi}{2}$ < y < $\frac{\pi}{2}$

Answer:

Given:

The relation $\sin^{-1}(x) = y$.


To Find:

The range of $y$ that represents the principal value branch of the inverse sine function.


Solution:

The function $y = \sin^{-1}(x)$ represents the inverse sine function. By definition, the range of the principal value branch of the inverse sine function is the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

This means that the value of $y$ must satisfy the inequality:

$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Now, let's compare this with the given options:

(A) $0 \le y \le \pi$ : This is the principal value range for $\cos^{-1}(x)$.

(B) $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ : This matches the principal value range for $\sin^{-1}(x)$.

(C) $0 < y < \pi$ : This is the principal value range for $\cot^{-1}(x)$.

(D) $-\frac{\pi}{2} < y < \frac{\pi}{2}$ : This is the principal value range for $\tan^{-1}(x)$.


Therefore, if $\sin^{-1}(x) = y$, the correct range for the principal value is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

The correct option is (B).

Question 14. tan-1 $\sqrt{3}$ - sec-1 (-2) is equal to

(A) π

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

(D) $\frac{2\pi}{3}$

Answer:

To Find:

The value of the expression $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$.


Solution:

We need to find the principal values of each term in the expression and then subtract the second from the first.

Step 1: Find the principal value of $\tan^{-1}(\sqrt{3})$.

Let $y_1 = \tan^{-1}(\sqrt{3})$. Then $\tan(y_1) = \sqrt{3}$.

The range of the principal value branch of $\tan^{-1}(x)$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We know that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.

Since $\frac{\pi}{3}$ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$.


Step 2: Find the principal value of $\sec^{-1}(-2)$.

Let $y_2 = \sec^{-1}(-2)$. Then $\sec(y_2) = -2$.

This implies $\cos(y_2) = \frac{1}{\sec(y_2)} = -\frac{1}{2}$.

The range of the principal value branch of $\sec^{-1}(x)$ is $\left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$. Alternatively, we find the angle $y_2$ in $[0, \pi]$ such that $\cos(y_2) = -\frac{1}{2}$ and check if $y_2 \neq \frac{\pi}{2}$.

We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. Since $\cos(y_2)$ is negative, $y_2$ must lie in the second quadrant within the range $[0, \pi]$.

The angle in the second quadrant corresponding to the reference angle $\frac{\pi}{3}$ is $\pi - \frac{\pi}{3} = \frac{2\pi}{3}$.

Since $\frac{2\pi}{3}$ lies in the interval $[0, \pi]$ and $\frac{2\pi}{3} \neq \frac{\pi}{2}$, it is in the principal value range for $\sec^{-1}(x)$.

$\sec^{-1}(-2) = \frac{2\pi}{3}$.


Step 3: Calculate the value of the expression.

The required value is $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$

$= \frac{\pi}{3} - \frac{2\pi}{3}$

$= \frac{\pi - 2\pi}{3}$

$= -\frac{\pi}{3}$


Comparing this value with the given options:

(A) $\pi$

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

(D) $\frac{2\pi}{3}$

The calculated value matches option (B).

Therefore, $\tan^{-1}(\sqrt{3}) - \sec^{-1}(-2)$ is equal to $\mathbf{-\frac{\pi}{3}}$.

The correct option is (B).



Example 3 to 8 (Before Exercise 2.2)

Example 3: Show that

(i) sin-1 $\left( 2x\sqrt{1-x^{2}} \right)$ = 2 sin-1 x, $-\frac{1}{\sqrt{2}}$ ≤ x ≤ $\frac{1}{\sqrt{2}}$

(ii) sin-1 $\left( 2x\sqrt{1-x^{2}} \right)$ = 2 cos-1 x, $\frac{1}{\sqrt{2}}$ ≤ x ≤ 1

Answer:

To Show:

(i) $\sin^{-1}\left( 2x\sqrt{1-x^{2}} \right) = 2 \sin^{-1} x$, for $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$

(ii) $\sin^{-1}\left( 2x\sqrt{1-x^{2}} \right) = 2 \cos^{-1} x$, for $\frac{1}{\sqrt{2}} \le x \le 1$


Proof (i):

Let $x = \sin\theta$.

Given the range $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$, we have:

$-\frac{1}{\sqrt{2}} \le \sin\theta \le \frac{1}{\sqrt{2}}$

Since the principal value range of $\sin^{-1}$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, this implies:

$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) \le \theta \le \sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$

$-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$

Now consider the expression inside the $\sin^{-1}$ function on the LHS:

$2x\sqrt{1-x^2} = 2\sin\theta\sqrt{1-\sin^2\theta}$

$= 2\sin\theta\sqrt{\cos^2\theta}$

$= 2\sin\theta|\cos\theta|$

Since $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$, $\theta$ is in the first or fourth quadrant, where $\cos\theta \ge 0$. Thus, $|\cos\theta| = \cos\theta$.

$= 2\sin\theta\cos\theta$

Using the double angle identity, $\sin(2\theta) = 2\sin\theta\cos\theta$.

$= \sin(2\theta)$

So, the LHS becomes $\sin^{-1}(\sin(2\theta))$.

We need to check the range of $2\theta$. Since $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$, multiplying by 2 gives:

$-\frac{\pi}{2} \le 2\theta \le \frac{\pi}{2}$

This range lies within the principal value range of $\sin^{-1}(y)$, which is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore, $\sin^{-1}(\sin(2\theta)) = 2\theta$.

Substitute back $\theta = \sin^{-1}x$:

LHS $= 2\theta = 2\sin^{-1}x$.

This is equal to the RHS.

Hence, $\sin^{-1}\left( 2x\sqrt{1-x^{2}} \right) = 2 \sin^{-1} x$ for $-\frac{1}{\sqrt{2}} \le x \le \frac{1}{\sqrt{2}}$.


Proof (ii):

Let $x = \cos\theta$.

Given the range $\frac{1}{\sqrt{2}} \le x \le 1$, we have:

$\frac{1}{\sqrt{2}} \le \cos\theta \le 1$

Since the principal value range of $\cos^{-1}$ is $[0, \pi]$, this implies:

$\cos^{-1}(1) \le \theta \le \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (Note: $\cos^{-1}$ is a decreasing function)

$0 \le \theta \le \frac{\pi}{4}$

Now consider the expression inside the $\sin^{-1}$ function on the LHS:

$2x\sqrt{1-x^2} = 2\cos\theta\sqrt{1-\cos^2\theta}$

$= 2\cos\theta\sqrt{\sin^2\theta}$

$= 2\cos\theta|\sin\theta|$

Since $0 \le \theta \le \frac{\pi}{4}$, $\theta$ is in the first quadrant, where $\sin\theta \ge 0$. Thus, $|\sin\theta| = \sin\theta$.

$= 2\sin\theta\cos\theta$

Using the double angle identity, $\sin(2\theta) = 2\sin\theta\cos\theta$.

$= \sin(2\theta)$

So, the LHS becomes $\sin^{-1}(\sin(2\theta))$.

We need to check the range of $2\theta$. Since $0 \le \theta \le \frac{\pi}{4}$, multiplying by 2 gives:

$0 \le 2\theta \le \frac{\pi}{2}$

This range lies within the principal value range of $\sin^{-1}(y)$, which is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Therefore, $\sin^{-1}(\sin(2\theta)) = 2\theta$.

Substitute back $\theta = \cos^{-1}x$:

LHS $= 2\theta = 2\cos^{-1}x$.

This is equal to the RHS.

Hence, $\sin^{-1}\left( 2x\sqrt{1-x^{2}} \right) = 2 \cos^{-1} x$ for $\frac{1}{\sqrt{2}} \le x \le 1$.

Example 4: Show that tan-1 $\frac{1}{2}$ + tan-1 $\frac{2}{11}$ = tan-1 $\frac{3}{4}$

Answer:

To Show:

$\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right)$


Proof:

We use the identity for the sum of two inverse tangent functions:

$\tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$, provided $xy < 1$.

Let $x = \frac{1}{2}$ and $y = \frac{2}{11}$.

First, we check the condition $xy < 1$:

$xy = \left(\frac{1}{2}\right) \times \left(\frac{2}{11}\right) = \frac{2}{22} = \frac{1}{11}$.

Since $\frac{1}{11} < 1$, the condition is satisfied, and we can apply the identity.

Now, consider the Left Hand Side (LHS):

LHS $= \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right)$

$= \tan^{-1}\left(\frac{\frac{1}{2} + \frac{2}{11}}{1 - \left(\frac{1}{2}\right)\left(\frac{2}{11}\right)}\right)$

$= \tan^{-1}\left(\frac{\frac{11 + 4}{22}}{1 - \frac{2}{22}}\right)$

$= \tan^{-1}\left(\frac{\frac{15}{22}}{1 - \frac{1}{11}}\right)$

$= \tan^{-1}\left(\frac{\frac{15}{22}}{\frac{11 - 1}{11}}\right)$

$= \tan^{-1}\left(\frac{\frac{15}{22}}{\frac{10}{11}}\right)$

$= \tan^{-1}\left(\frac{15}{22} \times \frac{11}{10}\right)$

$= \tan^{-1}\left(\frac{15 \times \cancel{11}^1}{\cancel{22}_2 \times 10}\right)$

$= \tan^{-1}\left(\frac{15}{20}\right)$

Simplify the fraction by dividing the numerator and denominator by 5:

$= \tan^{-1}\left(\frac{\cancel{15}^3}{\cancel{20}_4}\right)$

$= \tan^{-1}\left(\frac{3}{4}\right)$

This is equal to the Right Hand Side (RHS).

LHS = $\tan^{-1}\left(\frac{3}{4}\right)$ = RHS.


Hence, it is shown that $\mathbf{\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{2}{11}\right) = \tan^{-1}\left(\frac{3}{4}\right)}$.

Example 5: Express tan-1 $\left( \frac{cos \;x}{1-sin\; x} \right)$, $\frac{-3\pi}{2}$ < x < $\frac{\pi}{2}$ in the simplest form.

Answer:

Given:

The expression $\tan^{-1}\left( \frac{\cos x}{1-\sin x} \right)$ for $-\frac{3\pi}{2} < x < \frac{\pi}{2}$.


To Find:

The simplest form of the given expression.


Solution:

We want to simplify the argument of the $\tan^{-1}$ function, $\frac{\cos x}{1-\sin x}$.

We use the half-angle identities:

$\cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)$

$\sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)$

$1 = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)$

Substitute these into the fraction:

$\frac{\cos x}{1-\sin x} = \frac{\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)}{\cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) - 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}$

Factor the numerator as a difference of squares and the denominator as a perfect square:

$\frac{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)\left(\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)\right)}{\left(\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right)^2}$

We need to ensure the term we cancel is not zero. $\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) = 0$ implies $\tan\left(\frac{x}{2}\right) = 1$, so $\frac{x}{2} = n\pi + \frac{\pi}{4}$, which gives $x = 2n\pi + \frac{\pi}{2}$. The value $x = \frac{\pi}{2}$ is not included in the interval $-\frac{3\pi}{2} < x < \frac{\pi}{2}$. The value $x = -2\pi + \frac{\pi}{2} = -\frac{3\pi}{2}$ is also not included. Thus, we can cancel the term.

$\frac{\cos x}{1-\sin x} = \frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)}$

Divide the numerator and the denominator by $\cos\left(\frac{x}{2}\right)$ (assuming $\cos\left(\frac{x}{2}\right) \neq 0$, which means $x \neq \pi + 2n\pi$; we will check these cases later if needed):

$\frac{1 + \frac{\sin(x/2)}{\cos(x/2)}}{1 - \frac{\sin(x/2)}{\cos(x/2)}} = \frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)}$

Recall the tangent addition formula $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$. Using $A = \frac{\pi}{4}$ and $B = \frac{x}{2}$, we have $\tan\left(\frac{\pi}{4}\right) = 1$.

$\frac{1 + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{x}{2}\right)} = \frac{\tan\left(\frac{\pi}{4}\right) + \tan\left(\frac{x}{2}\right)}{1 - \tan\left(\frac{\pi}{4}\right)\tan\left(\frac{x}{2}\right)} = \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$

So the original expression becomes:

$\tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right)$

We can simplify $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies in the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Let's check the range of $\theta = \frac{\pi}{4} + \frac{x}{2}$.

Given $-\frac{3\pi}{2} < x < \frac{\pi}{2}$.

Divide by 2: $-\frac{3\pi}{4} < \frac{x}{2} < \frac{\pi}{4}$.

Add $\frac{\pi}{4}$: $-\frac{3\pi}{4} + \frac{\pi}{4} < \frac{x}{2} + \frac{\pi}{4} < \frac{\pi}{4} + \frac{\pi}{4}$.

$-\frac{2\pi}{4} < \frac{\pi}{4} + \frac{x}{2} < \frac{2\pi}{4}$.

$-\frac{\pi}{2} < \frac{\pi}{4} + \frac{x}{2} < \frac{\pi}{2}$.

Since the argument $\frac{\pi}{4} + \frac{x}{2}$ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the simplification $\tan^{-1}(\tan \theta) = \theta$ is valid.

Therefore, $\tan^{-1}\left(\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)\right) = \frac{\pi}{4} + \frac{x}{2}$.

(Checking the case where $\cos(x/2) = 0$: This occurs at $x = \pi, -\pi$. $x=-\pi$ is in the domain. For $x = -\pi$, the original expression is $\tan^{-1}(\frac{\cos(-\pi)}{1-\sin(-\pi)}) = \tan^{-1}(\frac{-1}{1-0}) = \tan^{-1}(-1) = -\frac{\pi}{4}$. The simplified form gives $\frac{\pi}{4} + \frac{-\pi}{2} = -\frac{\pi}{4}$. They match.)


The simplest form of the expression is $\mathbf{\frac{\pi}{4} + \frac{x}{2}}$.

Example 6: Write cot-1 $\left( \frac{1}{\sqrt{x^{2}-1}} \right)$, x > 1 in the simplest form.

Answer:

Given:

The expression $\cot^{-1}\left( \frac{1}{\sqrt{x^{2}-1}} \right)$, where $x > 1$.


To Find:

The simplest form of the given expression.


Solution:

The presence of the term $\sqrt{x^2 - 1}$ suggests a trigonometric substitution.

Let $x = \sec\theta$.

Since $x > 1$, we have $\sec\theta > 1$. This implies that $\theta$ can be chosen in the interval $\left(0, \frac{\pi}{2}\right)$. In this interval, $\tan\theta$ is positive.

Now, substitute $x = \sec\theta$ into the expression $\sqrt{x^2 - 1}$:

$\sqrt{x^2 - 1} = \sqrt{\sec^2\theta - 1}$

Using the identity $\sec^2\theta - 1 = \tan^2\theta$:

$\sqrt{x^2 - 1} = \sqrt{\tan^2\theta}$

Since $\theta \in \left(0, \frac{\pi}{2}\right)$, $\tan\theta > 0$. Therefore, $\sqrt{\tan^2\theta} = \tan\theta$.

Substitute this back into the original expression:

$\cot^{-1}\left( \frac{1}{\sqrt{x^{2}-1}} \right) = \cot^{-1}\left( \frac{1}{\tan\theta} \right)$

Using the identity $\frac{1}{\tan\theta} = \cot\theta$:

$= \cot^{-1}(\cot\theta)$

The principal value range for $\cot^{-1}(y)$ is $(0, \pi)$.

We chose $\theta \in \left(0, \frac{\pi}{2}\right)$. Since this interval is within $(0, \pi)$, we can simplify $\cot^{-1}(\cot\theta)$ to $\theta$.

So, $\cot^{-1}(\cot\theta) = \theta$.

Now, we need to express $\theta$ back in terms of $x$.

Since we let $x = \sec\theta$, it follows that $\theta = \sec^{-1}x$.

Therefore, the simplest form of the given expression is $\sec^{-1}x$.


The simplest form of $\cot^{-1}\left( \frac{1}{\sqrt{x^{2}-1}} \right)$ for $x > 1$ is $\mathbf{\sec^{-1}x}$.

Example 7: Prove that tan-1 x + tan-1 $\frac{2}{1-x^{2}}$ = tan-1 $\left( \frac{3x-x^{3}}{1-3x^{2}} \right)$ , |x| < $\frac{1}{\sqrt{3}}$

Answer:

To Prove:

$\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^{2}}\right) = \tan^{-1} \left( \frac{3x-x^{3}}{1-3x^{2}} \right)$, for $|x| < \frac{1}{\sqrt{3}}$.


Proof:

Let $x = \tan\theta$.

The condition $|x| < \frac{1}{\sqrt{3}}$ translates to $|\tan\theta| < \frac{1}{\sqrt{3}}$.

Since the principal value range of $\tan^{-1}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have:

$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) < \theta < \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$

$-\frac{\pi}{6} < \theta < \frac{\pi}{6}$

Now consider the Left Hand Side (LHS) of the equation:

LHS $= \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^{2}}\right)$

Substitute $x = \tan\theta$:

LHS $= \tan^{-1}(\tan\theta) + \tan^{-1}\left(\frac{2\tan\theta}{1-\tan^2\theta}\right)$

Using the double angle identity $\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$:

LHS $= \tan^{-1}(\tan\theta) + \tan^{-1}(\tan(2\theta))$

We need to evaluate these terms using the property $\tan^{-1}(\tan\alpha) = \alpha$ if $\alpha$ is in the principal range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

For the first term, $\tan^{-1}(\tan\theta)$: Since $-\frac{\pi}{6} < \theta < \frac{\pi}{6}$, $\theta$ is within the principal range. So, $\tan^{-1}(\tan\theta) = \theta$.

For the second term, $\tan^{-1}(\tan(2\theta))$: We need the range of $2\theta$. Since $-\frac{\pi}{6} < \theta < \frac{\pi}{6}$, multiplying by 2 gives $-\frac{\pi}{3} < 2\theta < \frac{\pi}{3}$. This range is also within the principal range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, $\tan^{-1}(\tan(2\theta)) = 2\theta$.

Therefore, LHS $= \theta + 2\theta = 3\theta$.

Now consider the Right Hand Side (RHS) of the equation:

RHS $= \tan^{-1}\left( \frac{3x-x^{3}}{1-3x^{2}} \right)$

Substitute $x = \tan\theta$:

RHS $= \tan^{-1}\left( \frac{3\tan\theta - \tan^3\theta}{1-3\tan^2\theta} \right)$

Using the triple angle identity $\tan(3\alpha) = \frac{3\tan\alpha - \tan^3\alpha}{1-3\tan^2\alpha}$:

RHS $= \tan^{-1}(\tan(3\theta))$

We need to check the range of $3\theta$. Since $-\frac{\pi}{6} < \theta < \frac{\pi}{6}$, multiplying by 3 gives $-\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$. This range is exactly the principal range for $\tan^{-1}$.

Therefore, $\tan^{-1}(\tan(3\theta)) = 3\theta$.

We have shown that LHS $= 3\theta$ and RHS $= 3\theta$.

Thus, LHS = RHS.


Hence, it is proved that $\mathbf{\tan^{-1} x + \tan^{-1} \left(\frac{2x}{1-x^{2}}\right) = \tan^{-1} \left( \frac{3x-x^{3}}{1-3x^{2}} \right)}$ for $|x| < \frac{1}{\sqrt{3}}$.

Example 8: Find the value of cos (sec–1 x + cosec–1 x), | x | ≥ 1

Answer:

Given:

The expression $\cos(\sec^{-1}x + \text{cosec}^{-1}x)$, where $|x| \ge 1$.


To Find:

The value of the given expression.


Solution:

We know the identity relating the inverse secant and inverse cosecant functions:

$\sec^{-1}x + \text{cosec}^{-1}x = \frac{\pi}{2}$

This identity holds for all values of $x$ for which both $\sec^{-1}x$ and $\text{cosec}^{-1}x$ are defined. The domain for both functions is $(-\infty, -1] \cup [1, \infty)$, which is equivalent to $|x| \ge 1$.

Since the problem states that $|x| \ge 1$, the condition for the identity is met.

Now, substitute the identity into the given expression:

$\cos(\sec^{-1}x + \text{cosec}^{-1}x) = \cos\left(\frac{\pi}{2}\right)$

We know the value of $\cos\left(\frac{\pi}{2}\right)$ is 0.

Therefore, $\cos\left(\frac{\pi}{2}\right) = 0$.


The value of $\cos(\sec^{-1}x + \text{cosec}^{-1}x)$ for $|x| \ge 1$ is 0.



Exercise 2.2

Prove the following:

Question 1. 3 sin–1 x = sin–1 (3x – 4x3), x∈ $\left[ -\frac{1}{2} , \frac{1}{2}\right]$

Answer:

To Prove:

$3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)$, for $x \in \left[ -\frac{1}{2} , \frac{1}{2}\right]$.


Proof:

Let $x = \sin\theta$.

Since $x \in \left[ -\frac{1}{2} , \frac{1}{2}\right]$, we have:

$-\frac{1}{2} \le \sin\theta \le \frac{1}{2}$

Considering the principal value range of $\sin^{-1}(x)$ which is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, taking $\sin^{-1}$ of the inequality gives:

$\sin^{-1}\left(-\frac{1}{2}\right) \le \theta \le \sin^{-1}\left(\frac{1}{2}\right)$

$-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}$

Now consider the Right Hand Side (RHS) of the equation:

RHS $= \sin^{-1}(3x - 4x^3)$

Substitute $x = \sin\theta$:

RHS $= \sin^{-1}(3\sin\theta - 4\sin^3\theta)$

Using the triple angle identity for sine, $\sin(3\theta) = 3\sin\theta - 4\sin^3\theta$:

RHS $= \sin^{-1}(\sin(3\theta))$

Now, we need to check the range of $3\theta$.

Since $-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}$, multiplying by 3 gives:

$3 \times \left(-\frac{\pi}{6}\right) \le 3\theta \le 3 \times \left(\frac{\pi}{6}\right)$

$-\frac{\pi}{2} \le 3\theta \le \frac{\pi}{2}$

The range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ is the principal value range for the $\sin^{-1}$ function.

Therefore, $\sin^{-1}(\sin(3\theta)) = 3\theta$.

RHS $= 3\theta$

Now substitute back $\theta = \sin^{-1}x$:

RHS $= 3\sin^{-1}x$.

The Left Hand Side (LHS) is $3\sin^{-1}x$.

Since RHS = LHS, the identity is proved.


Hence, it is proved that $\mathbf{3 \sin^{-1} x = \sin^{-1} (3x - 4x^3)}$ for $x \in \left[ -\frac{1}{2} , \frac{1}{2}\right]$.

Question 2. 3 cos–1 x = cos–1 (4x3 – 3x), x∈ $\left[ \frac{1}{2} , 1 \right]$

Answer:

To Prove:

$3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x)$, for $x \in \left[ \frac{1}{2} , 1 \right]$.


Proof:

Let $x = \cos\theta$.

Since $x \in \left[ \frac{1}{2} , 1 \right]$, we have:

$\frac{1}{2} \le \cos\theta \le 1$

Considering the principal value range of $\cos^{-1}(x)$ which is $[0, \pi]$, taking $\cos^{-1}$ of the inequality (and reversing the inequality signs because $\cos^{-1}$ is a decreasing function):

$\cos^{-1}(1) \le \theta \le \cos^{-1}\left(\frac{1}{2}\right)$

$0 \le \theta \le \frac{\pi}{3}$

Now consider the Right Hand Side (RHS) of the equation:

RHS $= \cos^{-1}(4x^3 - 3x)$

Substitute $x = \cos\theta$:

RHS $= \cos^{-1}(4\cos^3\theta - 3\cos\theta)$

Using the triple angle identity for cosine, $\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$:

RHS $= \cos^{-1}(\cos(3\theta))$

Now, we need to check the range of $3\theta$.

Since $0 \le \theta \le \frac{\pi}{3}$, multiplying by 3 gives:

$3 \times 0 \le 3\theta \le 3 \times \frac{\pi}{3}$

$0 \le 3\theta \le \pi$

The range $[0, \pi]$ is the principal value range for the $\cos^{-1}$ function.

Therefore, $\cos^{-1}(\cos(3\theta)) = 3\theta$.

RHS $= 3\theta$

Now substitute back $\theta = \cos^{-1}x$:

RHS $= 3\cos^{-1}x$.

The Left Hand Side (LHS) is $3\cos^{-1}x$.

Since RHS = LHS, the identity is proved.


Hence, it is proved that $\mathbf{3 \cos^{-1} x = \cos^{-1} (4x^3 - 3x)}$ for $x \in \left[ \frac{1}{2} , 1 \right]$.

Question 3. tan-1 $\frac{2}{11}$ + tan-1 $\frac{7}{24}$ = tan-1 $\frac{1}{2}$

Answer:

To Prove:

$\tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{7}{24}\right) = \tan^{-1}\left(\frac{1}{2}\right)$


Proof:

We start with the Left Hand Side (LHS) and use the identity for the sum of two inverse tangent functions:

$\tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$, provided $xy < 1$.

Let $x = \frac{2}{11}$ and $y = \frac{7}{24}$.

First, let's check the condition $xy < 1$.

$xy = \left(\frac{2}{11}\right) \times \left(\frac{7}{24}\right) = \frac{2 \times 7}{11 \times 24} = \frac{14}{264}$.

Since $14 < 264$, we have $xy < 1$. The condition is satisfied, so we can apply the identity.

LHS $= \tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{7}{24}\right)$

$= \tan^{-1}\left(\frac{\frac{2}{11} + \frac{7}{24}}{1 - \left(\frac{2}{11}\right)\left(\frac{7}{24}\right)}\right)$

$= \tan^{-1}\left(\frac{\frac{2 \times 24 + 7 \times 11}{11 \times 24}}{1 - \frac{14}{264}}\right)$

$= \tan^{-1}\left(\frac{\frac{48 + 77}{264}}{\frac{264 - 14}{264}}\right)$

$= \tan^{-1}\left(\frac{\frac{125}{264}}{\frac{250}{264}}\right)$

We can cancel the denominator 264 from the numerator and denominator of the main fraction:

$= \tan^{-1}\left(\frac{125}{250}\right)$

Simplify the fraction $\frac{125}{250}$:

$= \tan^{-1}\left(\frac{\cancel{125}^1}{\cancel{250}_2}\right)$

$= \tan^{-1}\left(\frac{1}{2}\right)$

This is equal to the Right Hand Side (RHS).

LHS = $\tan^{-1}\left(\frac{1}{2}\right)$ = RHS.


Hence, it is proved that $\mathbf{\tan^{-1}\left(\frac{2}{11}\right) + \tan^{-1}\left(\frac{7}{24}\right) = \tan^{-1}\left(\frac{1}{2}\right)}$.

Question 4. 2tan-1 $\frac{1}{2}$ + tan-1 $\frac{1}{7}$ = tan-1 $\frac{31}{17}$

Answer:

To Prove:

$2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{31}{17}\right)$


Proof:

We start with the Left Hand Side (LHS): $2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right)$.

First, we simplify the term $2\tan^{-1}\left(\frac{1}{2}\right)$ using the identity:

$2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, provided $|x| < 1$.

Here, $x = \frac{1}{2}$. Since $|x| = \frac{1}{2} < 1$, the identity is applicable.

$2\tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{2 \times \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2}\right)$

$= \tan^{-1}\left(\frac{1}{1 - \frac{1}{4}}\right)$

$= \tan^{-1}\left(\frac{1}{\frac{3}{4}}\right)$

$= \tan^{-1}\left(\frac{4}{3}\right)$

Now substitute this back into the LHS:

LHS $= \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right)$

Next, we use the identity for the sum of two inverse tangent functions:

$\tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right)$, provided $xy < 1$.

Let $x = \frac{4}{3}$ and $y = \frac{1}{7}$.

Check the condition $xy < 1$.

$xy = \left(\frac{4}{3}\right) \times \left(\frac{1}{7}\right) = \frac{4}{21}$.

Since $4 < 21$, we have $xy < 1$. The condition is satisfied, so we can apply the identity.

LHS $= \tan^{-1}\left(\frac{\frac{4}{3} + \frac{1}{7}}{1 - \left(\frac{4}{3}\right)\left(\frac{1}{7}\right)}\right)$

$= \tan^{-1}\left(\frac{\frac{4 \times 7 + 1 \times 3}{3 \times 7}}{1 - \frac{4}{21}}\right)$

$= \tan^{-1}\left(\frac{\frac{28 + 3}{21}}{\frac{21 - 4}{21}}\right)$

$= \tan^{-1}\left(\frac{\frac{31}{21}}{\frac{17}{21}}\right)$

Cancel the denominator 21:

$= \tan^{-1}\left(\frac{31}{17}\right)$

This is equal to the Right Hand Side (RHS).

LHS = $\tan^{-1}\left(\frac{31}{17}\right)$ = RHS.


Hence, it is proved that $\mathbf{2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{7}\right) = \tan^{-1}\left(\frac{31}{17}\right)}$.

Write the following functions in the simplest form:

Question 5. tan-1 $\frac{\sqrt{1+x^{2}}-1}{x}$ , x ≠ 0

Answer:

Given:

The function $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$, where $x \neq 0$.


To Find:

The simplest form of the given function.


Solution:

The presence of the term $\sqrt{1+x^2}$ suggests the trigonometric substitution $x = \tan\theta$.

Let $x = \tan\theta$. Since the range of $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we can assume $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

The condition $x \neq 0$ implies $\tan\theta \neq 0$, so $\theta \neq 0$.

Now substitute $x = \tan\theta$ into the expression inside the $\tan^{-1}$ function:

$\frac{\sqrt{1+x^2}-1}{x} = \frac{\sqrt{1+\tan^2\theta}-1}{\tan\theta}$

Using the identity $1 + \tan^2\theta = \sec^2\theta$:

$= \frac{\sqrt{\sec^2\theta}-1}{\tan\theta}$

$= \frac{|\sec\theta|-1}{\tan\theta}$

For $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\sec\theta = \frac{1}{\cos\theta}$ is always positive. Therefore, $|\sec\theta| = \sec\theta$.

$= \frac{\sec\theta-1}{\tan\theta}$

Convert $\sec\theta$ and $\tan\theta$ to $\sin\theta$ and $\cos\theta$:

$= \frac{\frac{1}{\cos\theta}-1}{\frac{\sin\theta}{\cos\theta}}$

$= \frac{\frac{1-\cos\theta}{\cos\theta}}{\frac{\sin\theta}{\cos\theta}}$

Multiply the numerator and denominator by $\cos\theta$ (since $\theta \neq \pm \frac{\pi}{2}$, $\cos\theta \neq 0$):

$= \frac{1-\cos\theta}{\sin\theta}$

Now, use the half-angle identities:

$1 - \cos\theta = 2\sin^2\left(\frac{\theta}{2}\right)$

$\sin\theta = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$

Substitute these into the expression:

$= \frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}$

Since $\theta \neq 0$, $\frac{\theta}{2} \neq 0$, which means $\sin\left(\frac{\theta}{2}\right) \neq 0$. We can cancel the term $2\sin\left(\frac{\theta}{2}\right)$:

$= \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}$

$= \tan\left(\frac{\theta}{2}\right)$

So the original expression becomes:

$\tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right)$

We need to check the range of $\frac{\theta}{2}$. Since $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\theta \neq 0$, we have $\frac{\theta}{2} \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ and $\frac{\theta}{2} \neq 0$.

This range $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \setminus \{0\}$ is within the principal value range of $\tan^{-1}(y)$, which is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, we can simplify $\tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) = \frac{\theta}{2}$.

Finally, substitute back $\theta = \tan^{-1}x$.

The simplified expression is $\frac{1}{2}\theta = \frac{1}{2}\tan^{-1}x$.


The simplest form of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ for $x \neq 0$ is $\mathbf{\frac{1}{2}\tan^{-1}x}$.

Question 6. tan-1 $\frac{1}{\sqrt{x^{2}-1}}$ , |x| > 1

Answer:

Given:

The function $\tan^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right)$, where $|x| > 1$.


To Find:

The simplest form of the given function.


Solution:

The presence of the term $\sqrt{x^2-1}$ suggests a trigonometric substitution.

Let $x = \text{cosec}\phi$.

The condition $|x| > 1$ means $x > 1$ or $x < -1$.

The principal value range for $\phi = \text{cosec}^{-1}x$ is $\left[-\frac{\pi}{2}, 0\right) \cup \left(0, \frac{\pi}{2}\right]$.

- If $x > 1$, then $\phi \in \left(0, \frac{\pi}{2}\right)$.

- If $x < -1$, then $\phi \in \left(-\frac{\pi}{2}, 0\right)$.

Now substitute $x = \text{cosec}\phi$ into the term $\sqrt{x^2-1}$:

$\sqrt{x^2-1} = \sqrt{\text{cosec}^2\phi - 1}$

Using the identity $\text{cosec}^2\phi - 1 = \cot^2\phi$:

$\sqrt{x^2-1} = \sqrt{\cot^2\phi} = |\cot\phi|$.

The expression becomes:

$E = \tan^{-1}\left(\frac{1}{|\cot\phi|}\right)$

Since $\frac{1}{\cot\phi} = \tan\phi$, we have $\frac{1}{|\cot\phi|} = |\tan\phi|$.

$E = \tan^{-1}(|\tan\phi|)$.

Now we consider the two cases for $x$:

Case 1: $x > 1$

In this case, $\phi \in \left(0, \frac{\pi}{2}\right)$. For angles in this interval, $\tan\phi > 0$.

Therefore, $|\tan\phi| = \tan\phi$.

The expression becomes $E = \tan^{-1}(\tan\phi)$.

Since $\phi \in \left(0, \frac{\pi}{2}\right)$, which is within the principal value range of $\tan^{-1}(y)$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have:

$E = \phi$.

Substituting back $\phi = \text{cosec}^{-1}x$, we get:

$E = \text{cosec}^{-1}x$ for $x > 1$.

Case 2: $x < -1$

In this case, $\phi \in \left(-\frac{\pi}{2}, 0\right)$. For angles in this interval, $\tan\phi < 0$.

Therefore, $|\tan\phi| = -\tan\phi$.

The expression becomes $E = \tan^{-1}(-\tan\phi)$.

Using the property $\tan^{-1}(-y) = -\tan^{-1}(y)$:

$E = -\tan^{-1}(\tan\phi)$.

Since $\phi \in \left(-\frac{\pi}{2}, 0\right)$, which is within the principal value range of $\tan^{-1}(y)$, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we have $\tan^{-1}(\tan\phi) = \phi$.

$E = -\phi$.

Substituting back $\phi = \text{cosec}^{-1}x$, we get:

$E = -\text{cosec}^{-1}x$ for $x < -1$.


Conclusion:

The simplest form of the function is:

$\tan^{-1}\left(\frac{1}{\sqrt{x^2-1}}\right) = \begin{cases} \text{cosec}^{-1}x & , & \text{if } x > 1 \\ -\text{cosec}^{-1}x & , & \text{if } x < -1 \end{cases}$

Alternatively, using the identity $\text{cosec}^{-1}x = \frac{\pi}{2} - \sec^{-1}x$ (for $|x|\ge 1$), we can write this as:

$\begin{cases} \frac{\pi}{2} - \sec^{-1}x & , & \text{if } x > 1 \\ -(\frac{\pi}{2} - \sec^{-1}x) = \sec^{-1}x - \frac{\pi}{2} & , & \text{if } x < -1 \end{cases}$

Question 7. tan-1 $\left( \sqrt{\frac{1-cos\;x}{1+cos\;x}} \right)$, 0 < x < π

Answer:

Given:

The function $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$, where $0 < x < \pi$.


To Find:

The simplest form of the given function.


Solution:

First, we simplify the expression inside the square root using half-angle identities:

$1 - \cos x = 2\sin^2\left(\frac{x}{2}\right)$

$1 + \cos x = 2\cos^2\left(\frac{x}{2}\right)$

Substitute these into the fraction:

$\frac{1-\cos x}{1+\cos x} = \frac{2\sin^2\left(\frac{x}{2}\right)}{2\cos^2\left(\frac{x}{2}\right)} = \tan^2\left(\frac{x}{2}\right)$

Now, substitute this back into the argument of the $\tan^{-1}$ function:

$\sqrt{\frac{1-\cos x}{1+\cos x}} = \sqrt{\tan^2\left(\frac{x}{2}\right)}$

$= \left|\tan\left(\frac{x}{2}\right)\right|$

We need to determine the sign of $\tan\left(\frac{x}{2}\right)$ based on the given range for $x$: $0 < x < \pi$.

Dividing the inequality by 2, we get:

$0 < \frac{x}{2} < \frac{\pi}{2}$

This means the angle $\frac{x}{2}$ lies in the first quadrant.

In the first quadrant, the tangent function is positive. Therefore, $\tan\left(\frac{x}{2}\right) > 0$.

So, $\left|\tan\left(\frac{x}{2}\right)\right| = \tan\left(\frac{x}{2}\right)$.

The original expression simplifies to:

$\tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right)$

We can use the property $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies within the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We found that the range for $\theta = \frac{x}{2}$ is $\left(0, \frac{\pi}{2}\right)$.

Since $\left(0, \frac{\pi}{2}\right)$ is contained within $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the property applies.

Therefore, $\tan^{-1}\left(\tan\left(\frac{x}{2}\right)\right) = \frac{x}{2}$.


The simplest form of $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$ for $0 < x < \pi$ is $\mathbf{\frac{x}{2}}$.

Question 8. tan-1 $\left( \frac{cos \;x - sin \;x}{cos \;x + sin \;x} \right)$, $\frac{-π}{4}$ < x < $\frac{3π}{4}$

Answer:

Given:

The function $\tan^{-1}\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)$, where $-\frac{\pi}{4} < x < \frac{3\pi}{4}$.


To Find:

The simplest form of the given function.


Solution:

First, we simplify the expression inside the $\tan^{-1}$ function:

$E = \frac{\cos x - \sin x}{\cos x + \sin x}$

Divide both the numerator and the denominator by $\cos x$. We need to consider if $\cos x$ can be zero in the given interval. $\cos x = 0$ when $x = \frac{\pi}{2} + n\pi$. For the interval $-\frac{\pi}{4} < x < \frac{3\pi}{4}$, the only value where $\cos x = 0$ is $x = \frac{\pi}{2}$. Let's proceed with the division, assuming $\cos x \neq 0$ for now, and check the case $x=\frac{\pi}{2}$ later.

$E = \frac{\frac{\cos x}{\cos x} - \frac{\sin x}{\cos x}}{\frac{\cos x}{\cos x} + \frac{\sin x}{\cos x}} = \frac{1 - \tan x}{1 + \tan x}$

We can rewrite this expression using the tangent subtraction formula, $\tan(A-B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$.

Let $A = \frac{\pi}{4}$, so $\tan A = 1$.

$E = \frac{\tan\left(\frac{\pi}{4}\right) - \tan x}{1 + \tan\left(\frac{\pi}{4}\right)\tan x} = \tan\left(\frac{\pi}{4} - x\right)$

So the original expression becomes:

$\tan^{-1}\left(\tan\left(\frac{\pi}{4} - x\right)\right)$

We can use the property $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies within the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Let's find the range of $\theta = \frac{\pi}{4} - x$.

We are given $-\frac{\pi}{4} < x < \frac{3\pi}{4}$.

Multiply by -1 (reversing the inequalities):

$-\frac{3\pi}{4} < -x < \frac{\pi}{4}$

Add $\frac{\pi}{4}$ to all parts:

$\frac{\pi}{4} - \frac{3\pi}{4} < \frac{\pi}{4} - x < \frac{\pi}{4} + \frac{\pi}{4}$

$-\frac{2\pi}{4} < \frac{\pi}{4} - x < \frac{2\pi}{4}$

$-\frac{\pi}{2} < \frac{\pi}{4} - x < \frac{\pi}{2}$

Since the angle $\theta = \frac{\pi}{4} - x$ lies within the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the property applies.

Therefore, $\tan^{-1}\left(\tan\left(\frac{\pi}{4} - x\right)\right) = \frac{\pi}{4} - x$.

Now, let's check the case $x = \frac{\pi}{2}$, where $\cos x = 0$.

Original expression: $\tan^{-1}\left( \frac{\cos(\pi/2) - \sin(\pi/2)}{\cos(\pi/2) + \sin(\pi/2)} \right) = \tan^{-1}\left( \frac{0 - 1}{0 + 1} \right) = \tan^{-1}(-1) = -\frac{\pi}{4}$.

Simplified form: $\frac{\pi}{4} - x = \frac{\pi}{4} - \frac{\pi}{2} = -\frac{\pi}{4}$.

The simplified form holds even for $x = \frac{\pi}{2}$.


The simplest form of $\tan^{-1}\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)$ for $-\frac{\pi}{4} < x < \frac{3\pi}{4}$ is $\mathbf{\frac{\pi}{4} - x}$.

Question 9. tan-1 $\frac{x}{\sqrt{a^{2}-x^{2}}}$ , |x| < a

Answer:

Given:

The function $\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$, where $|x| < a$. Assume $a > 0$ for the expression $\sqrt{a^2-x^2}$ to be defined for a range of $x$.


To Find:

The simplest form of the given function.


Solution:

The term $\sqrt{a^2-x^2}$ suggests the trigonometric substitution $x = a\sin\theta$.

The condition $|x| < a$ translates to $-a < x < a$.

Substituting $x = a\sin\theta$ gives $-a < a\sin\theta < a$.

Since we assume $a > 0$, we can divide by $a$: $-1 < \sin\theta < 1$.

This means we can choose $\theta$ within the principal value range of the inverse sine function, excluding the endpoints: $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. From $x = a\sin\theta$, we get $\sin\theta = \frac{x}{a}$, so $\theta = \sin^{-1}\left(\frac{x}{a}\right)$.

Now, substitute $x = a\sin\theta$ into the expression $\frac{x}{\sqrt{a^2-x^2}}$:

Numerator: $x = a\sin\theta$.

Denominator: $\sqrt{a^2-x^2} = \sqrt{a^2 - (a\sin\theta)^2} = \sqrt{a^2 - a^2\sin^2\theta}$

$= \sqrt{a^2(1-\sin^2\theta)} = \sqrt{a^2\cos^2\theta}$

$= \sqrt{(a\cos\theta)^2} = |a\cos\theta|$

Since $a > 0$, $|a\cos\theta| = a|\cos\theta|$.

For the range $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the cosine function is positive, $\cos\theta > 0$.

Therefore, $|\cos\theta| = \cos\theta$, and the denominator is $a\cos\theta$.

The fraction inside the $\tan^{-1}$ function becomes:

$\frac{x}{\sqrt{a^2-x^2}} = \frac{a\sin\theta}{a\cos\theta}$

Since $|x| < a$ and $a>0$, $a \neq 0$. We can cancel $a$.

$\frac{\sin\theta}{\cos\theta} = \tan\theta$.

So the original function is:

$\tan^{-1}(\tan\theta)$

We can use the property $\tan^{-1}(\tan y) = y$ if $y$ lies in the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

In our case, $y = \theta$, and we found that $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, $\tan^{-1}(\tan\theta) = \theta$.

Finally, substitute back $\theta = \sin^{-1}\left(\frac{x}{a}\right)$.


The simplest form of $\tan^{-1}\left(\frac{x}{\sqrt{a^2-x^2}}\right)$ for $|x| < a$ is $\mathbf{\sin^{-1}\left(\frac{x}{a}\right)}$.

Question 10. tan-1 $\left( \frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} \right)$ , a > 0 ; $\frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$

Answer:

Given:

The function $\tan^{-1}\left( \frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} \right)$, where $a > 0$ and $\frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$.


To Find:

The simplest form of the given function.


Solution:

The expression inside the $\tan^{-1}$ resembles the tangent triple angle formula $\tan(3\theta) = \frac{3\tan\theta - \tan^3\theta}{1-3\tan^2\theta}$.

Let's manipulate the expression $\frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}}$. Divide the numerator and denominator by $a^3$ (since $a>0$, $a^3 \neq 0$):

$\frac{\frac{3a^{2}x}{a^3}-\frac{x^{3}}{a^3}}{\frac{a^{3}}{a^3}-\frac{3ax^{2}}{a^3}} = \frac{3\left(\frac{x}{a}\right) - \left(\frac{x}{a}\right)^3}{1 - 3\left(\frac{x}{a}\right)^2}$

This suggests the substitution $x = a\tan\theta$, which implies $\frac{x}{a} = \tan\theta$.

Now, let's determine the range for $\theta$ using the given condition on $x$: $\frac{-a}{\sqrt{3}} < x < \frac{a}{\sqrt{3}}$.

Since $a > 0$, we can divide the inequality by $a$:

$\frac{-1}{\sqrt{3}} < \frac{x}{a} < \frac{1}{\sqrt{3}}$

Substitute $\frac{x}{a} = \tan\theta$:

$-\frac{1}{\sqrt{3}} < \tan\theta < \frac{1}{\sqrt{3}}$

Taking the inverse tangent, and using the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$:

$\tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) < \theta < \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$

$-\frac{\pi}{6} < \theta < \frac{\pi}{6}$

Now substitute $\frac{x}{a} = \tan\theta$ into the simplified expression inside $\tan^{-1}$:

$\frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \tan(3\theta)$

So the original function becomes:

$\tan^{-1}(\tan(3\theta))$

We need to check if the argument $3\theta$ lies within the principal value range of $\tan^{-1}$, which is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Since $-\frac{\pi}{6} < \theta < \frac{\pi}{6}$, multiply by 3:

$3 \times \left(-\frac{\pi}{6}\right) < 3\theta < 3 \times \left(\frac{\pi}{6}\right)$

$-\frac{\pi}{2} < 3\theta < \frac{\pi}{2}$

The range of $3\theta$ is exactly the principal value range for $\tan^{-1}$.

Therefore, we can simplify $\tan^{-1}(\tan(3\theta)) = 3\theta$.

Finally, substitute back $\theta = \tan^{-1}\left(\frac{x}{a}\right)$.

The simplified expression is $3\theta = 3\tan^{-1}\left(\frac{x}{a}\right)$.


The simplest form of $\tan^{-1}\left( \frac{3a^{2}x-x^{3}}{a^{3}-3ax^{2}} \right)$ is $\mathbf{3\tan^{-1}\left(\frac{x}{a}\right)}$.

Find the values of each of the following:

Question 11. tan-1 $\left[2 cos\left( 2sin^{-1} \frac{1}{2}\right) \right]$

Answer:

We need to find the value of the expression $\tan^{-1} \left[2 \cos\left( 2\sin^{-1} \frac{1}{2}\right) \right]$.

First, let's evaluate the innermost part, $\sin^{-1} \frac{1}{2}$.

We know that the principal value branch of $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Since $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ and $\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, we have:

$\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$

Now, substitute this value back into the expression:

$\tan^{-1} \left[2 \cos\left( 2 \times \frac{\pi}{6}\right) \right]$

$= \tan^{-1} \left[2 \cos\left( \frac{\pi}{3}\right) \right]$

We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$. Substituting this value:

$= \tan^{-1} \left[2 \times \frac{1}{2}\right]$

$= \tan^{-1} (1)$

We know that the principal value branch of $\tan^{-1}$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Since $\tan\left(\frac{\pi}{4}\right) = 1$ and $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, we have:

$\tan^{-1} (1) = \frac{\pi}{4}$

Therefore, $\tan^{-1} \left[2 \cos\left( 2\sin^{-1} \frac{1}{2}\right) \right] = \mathbf{\frac{\pi}{4}}$.

Question 12. cot (tan-1 a + cot-1 a)

Answer:

We need to find the value of the expression $\cot(\tan^{-1} a + \cot^{-1} a)$.

We use the fundamental identity relating $\tan^{-1} x$ and $\cot^{-1} x$:

$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$, for all real numbers $x$.

In our expression, we have $x = a$. So, we can substitute:

$\tan^{-1} a + \cot^{-1} a = \frac{\pi}{2}$

Now substitute this result back into the original expression:

$\cot(\tan^{-1} a + \cot^{-1} a) = \cot\left(\frac{\pi}{2}\right)$

We know the value of $\cot\left(\frac{\pi}{2}\right)$:

$\cot\left(\frac{\pi}{2}\right) = \frac{\cos\left(\frac{\pi}{2}\right)}{\sin\left(\frac{\pi}{2}\right)} = \frac{0}{1} = 0$

Therefore, $\cot(\tan^{-1} a + \cot^{-1} a) = \mathbf{0}$.

Question 13. $\tan\frac{1}{2}\left[ \sin^{-1} \frac{2x}{1+x^2}+ \cos^{-1}\frac{1-y^2}{1+y^2} \right]$ , |x| < 1, y > 0 and xy < 1

Answer:

We need to find the value of the expression $\tan\frac{1}{2}\left[ \sin^{-1} \frac{2x}{1+x^2}+ \cos^{-1}\frac{1-y^2}{1+y^2} \right]$ given the conditions $|x| < 1$, $y > 0$, and $xy < 1$.

We know the following standard inverse trigonometric identities:

1. $\sin^{-1} \frac{2x}{1+x^2} = 2 \tan^{-1} x$, for $|x| \le 1$. Since the condition $|x| < 1$ is given, this identity holds.

2. $\cos^{-1} \frac{1-y^2}{1+y^2} = 2 \tan^{-1} y$, for $y \ge 0$. Since the condition $y > 0$ is given, this identity holds.

Substitute these identities into the given expression:

$\tan\frac{1}{2}\left[ 2 \tan^{-1} x + 2 \tan^{-1} y \right]$

Factor out 2 from the expression inside the square brackets:

$= \tan\frac{1}{2}\left[ 2 (\tan^{-1} x + \tan^{-1} y) \right]$

Simplify by cancelling the $\frac{1}{2}$ and $2$:

$= \tan(\tan^{-1} x + \tan^{-1} y)$

Now, we use the identity for the sum of two inverse tangents:

$\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right)$, provided $xy < 1$.

The condition $xy < 1$ is given in the problem, so we can apply this identity.

Substitute this identity back into the expression:

$= \tan\left( \tan^{-1} \left( \frac{x+y}{1-xy} \right) \right)$

Finally, use the property $\tan(\tan^{-1} z) = z$:

$= \frac{x+y}{1-xy}$

Therefore, the value of the given expression is $\mathbf{\frac{x+y}{1-xy}}$.

Question 14. If $sin \left( sin^{-1}\frac{1}{5}+cos^{-1}x \right) = 1$ , then find the value of x

Answer:

Given:

The equation is given as:

$\sin \left( \sin^{-1}\frac{1}{5} + \cos^{-1}x \right) = 1$


To Find:

The value of $x$.


Solution:

We know that $\sin \theta = 1$ implies $\theta = \frac{\pi}{2} + 2n\pi$ for any integer $n$.

In our case, $\theta = \sin^{-1}\frac{1}{5} + \cos^{-1}x$.

The range of $\sin^{-1} y$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and the range of $\cos^{-1} y$ is $[0, \pi]$.

Since $\frac{1}{5}$ is positive, $0 < \sin^{-1}\frac{1}{5} < \frac{\pi}{2}$.

Also, $0 \le \cos^{-1}x \le \pi$.

Therefore, the sum lies in the interval $(0 + 0, \frac{\pi}{2} + \pi) = (0, \frac{3\pi}{2})$.

The only value in the interval $(0, \frac{3\pi}{2})$ for which $\sin \theta = 1$ is $\theta = \frac{\pi}{2}$.

So, we must have:

$\sin^{-1}\frac{1}{5} + \cos^{-1}x = \frac{\pi}{2}$

We know the identity:

$\sin^{-1}y + \cos^{-1}y = \frac{\pi}{2}$ for all $y \in [-1, 1]$.

Rearranging the identity, we get $\cos^{-1}y = \frac{\pi}{2} - \sin^{-1}y$.

From our equation, we have:

$\cos^{-1}x = \frac{\pi}{2} - \sin^{-1}\frac{1}{5}$

Comparing this with the identity $\cos^{-1}y = \frac{\pi}{2} - \sin^{-1}y$, we can see that $y$ corresponds to $\frac{1}{5}$.

Thus, $\cos^{-1}x = \cos^{-1}\frac{1}{5}$.

Taking cosine on both sides (or by comparing the arguments), we get:

$x = \frac{1}{5}$

Since $\frac{1}{5}$ is in the domain $[-1, 1]$ for $\cos^{-1}x$ and $\sin^{-1}y$, this solution is valid.

Therefore, the value of $x$ is $\mathbf{\frac{1}{5}}$.

Question 15. If tan-1 $\frac{x - 1}{x - 2}$ + tan-1 $\frac{x + 1}{x + 2}$ = $\frac{\pi}{4}$, then find the value of x.

Answer:

Given:

The equation is given as:

$\tan^{-1} \frac{x - 1}{x - 2} + \tan^{-1} \frac{x + 1}{x + 2} = \frac{\pi}{4}$


To Find:

The value of $x$.


Solution:

We use the identity for the sum of two inverse tangents:

$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided $AB < 1$.

Let $A = \frac{x - 1}{x - 2}$ and $B = \frac{x + 1}{x + 2}$.

Applying the identity to the given equation:

$\tan^{-1} \left( \frac{\frac{x - 1}{x - 2} + \frac{x + 1}{x + 2}}{1 - \left(\frac{x - 1}{x - 2}\right)\left(\frac{x + 1}{x + 2}\right)} \right) = \frac{\pi}{4}$

Now, let's simplify the numerator and the denominator inside the $\tan^{-1}$ function.

Numerator:

$\frac{x - 1}{x - 2} + \frac{x + 1}{x + 2} = \frac{(x - 1)(x + 2) + (x + 1)(x - 2)}{(x - 2)(x + 2)}$

$= \frac{(x^2 + x - 2) + (x^2 - x - 2)}{x^2 - 4}$

$= \frac{2x^2 - 4}{x^2 - 4}$

Denominator:

$1 - \left(\frac{x - 1}{x - 2}\right)\left(\frac{x + 1}{x + 2}\right) = 1 - \frac{(x - 1)(x + 1)}{(x - 2)(x + 2)}$

$= 1 - \frac{x^2 - 1}{x^2 - 4}$

$= \frac{(x^2 - 4) - (x^2 - 1)}{x^2 - 4}$

$= \frac{x^2 - 4 - x^2 + 1}{x^2 - 4}$

$= \frac{-3}{x^2 - 4}$

Substitute these simplified parts back into the equation (assuming $x^2 - 4 \neq 0$, i.e., $x \neq \pm 2$):

$\tan^{-1} \left( \frac{\frac{2x^2 - 4}{x^2 - 4}}{\frac{-3}{x^2 - 4}} \right) = \frac{\pi}{4}$

$\tan^{-1} \left( \frac{2x^2 - 4}{-3} \right) = \frac{\pi}{4}$

Taking the tangent of both sides:

$\frac{2x^2 - 4}{-3} = \tan\left(\frac{\pi}{4}\right)$

$\frac{2x^2 - 4}{-3} = 1$

Multiply both sides by -3:

$2x^2 - 4 = -3$

$2x^2 = -3 + 4$

$2x^2 = 1$

$x^2 = \frac{1}{2}$

$x = \pm \sqrt{\frac{1}{2}}$

$x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}$

Now, we must check the condition $AB < 1$ for the identity used.

$AB = \left(\frac{x - 1}{x - 2}\right)\left(\frac{x + 1}{x + 2}\right) = \frac{x^2 - 1}{x^2 - 4}$

Substitute $x^2 = \frac{1}{2}$ into this expression:

$AB = \frac{\frac{1}{2} - 1}{\frac{1}{2} - 4} = \frac{-\frac{1}{2}}{-\frac{7}{2}} = \frac{1}{7}$

Since $AB = \frac{1}{7} < 1$, the use of the identity was valid for the obtained values of $x$.

Therefore, the values of $x$ are $\mathbf{\frac{1}{\sqrt{2}}}$ and $\mathbf{-\frac{1}{\sqrt{2}}}$.

Find the values of each of the expressions in Exercises 16 to 18

Question 16. sin-1 $\left(sin \frac{2\pi}{3} \right)$

Answer:

We need to find the value of the expression $\sin^{-1} \left(\sin \frac{2\pi}{3} \right)$.

We know that the principal value branch of the inverse sine function, $\sin^{-1} x$, is $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

The identity $\sin^{-1}(\sin x) = x$ holds only if $x$ belongs to this principal value range.

In this case, the angle is $x = \frac{2\pi}{3}$.

We check if $\frac{2\pi}{3}$ lies within the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Since $\frac{2\pi}{3}$ is greater than $\frac{\pi}{2}$, it does not lie in the principal value range.

Therefore, we cannot directly write $\sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \frac{2\pi}{3}$.

We need to find an angle $\theta \in \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ such that $\sin \theta = \sin \frac{2\pi}{3}$.

Using the trigonometric identity $\sin(\pi - x) = \sin x$, we can write:

$\sin \frac{2\pi}{3} = \sin\left(\pi - \frac{2\pi}{3}\right)$

$\sin \frac{2\pi}{3} = \sin\left(\frac{3\pi - 2\pi}{3}\right)$

$\sin \frac{2\pi}{3} = \sin\left(\frac{\pi}{3}\right)$

Now, the angle $\frac{\pi}{3}$ lies within the principal value range $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ because $-\frac{\pi}{2} \le \frac{\pi}{3} \le \frac{\pi}{2}$.

So, we can substitute $\sin \frac{\pi}{3}$ for $\sin \frac{2\pi}{3}$ in the original expression:

$\sin^{-1} \left(\sin \frac{2\pi}{3} \right) = \sin^{-1} \left(\sin \frac{\pi}{3} \right)$

Now, since $\frac{\pi}{3}$ is in the principal value range, we can use the identity $\sin^{-1}(\sin x) = x$:

$\sin^{-1} \left(\sin \frac{\pi}{3} \right) = \frac{\pi}{3}$

Therefore, the value of the expression is $\mathbf{\frac{\pi}{3}}$.

Question 17. tan-1 $\left(tan \frac{3\pi}{4} \right)$

Answer:

We need to find the value of the expression $\tan^{-1} \left(\tan \frac{3\pi}{4} \right)$.

We know that the principal value branch of the inverse tangent function, $\tan^{-1} x$, is $\left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$.

The identity $\tan^{-1}(\tan x) = x$ holds only if $x$ belongs to this principal value range.

In this case, the angle is $x = \frac{3\pi}{4}$.

We check if $\frac{3\pi}{4}$ lies within the interval $\left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$.

Since $\frac{3\pi}{4}$ is greater than $\frac{\pi}{2}$, it does not lie in the principal value range.

Therefore, we cannot directly write $\tan^{-1} \left(\tan \frac{3\pi}{4} \right) = \frac{3\pi}{4}$.

We need to find an angle $\theta \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$ such that $\tan \theta = \tan \frac{3\pi}{4}$.

Using the trigonometric identity $\tan(\pi - x) = -\tan x$ or $\tan(x - \pi) = \tan x$. Let's use the second one which relates to the periodicity of $\tan$.

$\tan \frac{3\pi}{4} = \tan\left(\frac{3\pi}{4} - \pi \right)$

$\tan \frac{3\pi}{4} = \tan\left(\frac{3\pi - 4\pi}{4}\right)$

$\tan \frac{3\pi}{4} = \tan\left(-\frac{\pi}{4}\right)$

Now, the angle $-\frac{\pi}{4}$ lies within the principal value range $\left( -\frac{\pi}{2}, \frac{\pi}{2} \right)$ because $-\frac{\pi}{2} < -\frac{\pi}{4} < \frac{\pi}{2}$.

So, we can substitute $\tan \left(-\frac{\pi}{4}\right)$ for $\tan \frac{3\pi}{4}$ in the original expression:

$\tan^{-1} \left(\tan \frac{3\pi}{4} \right) = \tan^{-1} \left(\tan \left(-\frac{\pi}{4}\right) \right)$

Now, since $-\frac{\pi}{4}$ is in the principal value range, we can use the identity $\tan^{-1}(\tan x) = x$:

$\tan^{-1} \left(\tan \left(-\frac{\pi}{4}\right) \right) = -\frac{\pi}{4}$

Therefore, the value of the expression is $\mathbf{-\frac{\pi}{4}}$.

Question 18. tan $\left(sin^{-1} \frac{3}{5}+cot^{-1}\frac{3}{2} \right)$

Answer:

We need to find the value of the expression $\tan \left(\sin^{-1} \frac{3}{5}+\cot^{-1}\frac{3}{2} \right)$.

To simplify this, we will convert the inverse sine and inverse cotangent terms into inverse tangent terms.


Step 1: Convert $\sin^{-1} \frac{3}{5}$ to $\tan^{-1}$ form.

Let $\alpha = \sin^{-1} \frac{3}{5}$. This implies $\sin \alpha = \frac{3}{5}$.

Since the range of $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$ and $\sin \alpha$ is positive, $\alpha$ must be in the first quadrant, i.e., $\alpha \in \left(0, \frac{\pi}{2}\right]$.

We can find $\cos \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$.

$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}$.

Since $\alpha$ is in the first quadrant, $\cos \alpha$ is positive. So, $\cos \alpha = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, we can find $\tan \alpha$:

$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3/5}{4/5} = \frac{3}{4}$.

Therefore, $\alpha = \tan^{-1} \frac{3}{4}$. So, $\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$.


Step 2: Convert $\cot^{-1} \frac{3}{2}$ to $\tan^{-1}$ form.

Let $\beta = \cot^{-1} \frac{3}{2}$. This implies $\cot \beta = \frac{3}{2}$.

Since the range of $\cot^{-1}$ is $(0, \pi)$ and $\cot \beta$ is positive, $\beta$ must be in the first quadrant, i.e., $\beta \in \left(0, \frac{\pi}{2}\right)$.

We know that $\tan \beta = \frac{1}{\cot \beta}$.

So, $\tan \beta = \frac{1}{3/2} = \frac{2}{3}$.

Therefore, $\beta = \tan^{-1} \frac{2}{3}$. So, $\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$.


Step 3: Substitute the $\tan^{-1}$ forms back into the original expression.

The expression becomes:

$\tan \left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} \right)$


Step 4: Apply the sum formula for inverse tangent.

We use the identity $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided $AB < 1$.

Here $A = \frac{3}{4}$ and $B = \frac{2}{3}$.

Check the condition: $AB = \frac{3}{4} \times \frac{2}{3} = \frac{6}{12} = \frac{1}{2}$. Since $\frac{1}{2} < 1$, the identity is applicable.

$\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} = \tan^{-1} \left( \frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}} \right)$

$= \tan^{-1} \left( \frac{\frac{9 + 8}{12}}{1 - \frac{6}{12}} \right)$

$= \tan^{-1} \left( \frac{\frac{17}{12}}{\frac{12 - 6}{12}} \right)$

$= \tan^{-1} \left( \frac{\frac{17}{12}}{\frac{6}{12}} \right)$

$= \tan^{-1} \left( \frac{17}{\cancel{12}} \times \frac{\cancel{12}}{6} \right)$

$= \tan^{-1} \left( \frac{17}{6} \right)$


Step 5: Substitute the simplified sum back into the expression.

The expression is now:

$\tan \left( \tan^{-1} \frac{17}{6} \right)$


Step 6: Apply the identity $\tan(\tan^{-1} x) = x$.

$\tan \left( \tan^{-1} \frac{17}{6} \right) = \frac{17}{6}$


Therefore, the value of the expression $\tan \left(\sin^{-1} \frac{3}{5}+\cot^{-1}\frac{3}{2} \right)$ is $\mathbf{\frac{17}{6}}$.

Question 19. cos-1$\left( cos\frac{7\pi}{6} \right)$ is equal to

(A) $\frac{7\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{6}$

Answer:

We need to find the value of the expression $\cos^{-1}\left( \cos\frac{7\pi}{6} \right)$.

We know that the principal value branch of the inverse cosine function, $\cos^{-1} x$, is $[0, \pi]$.

The identity $\cos^{-1}(\cos x) = x$ holds only if $x$ belongs to this principal value range $[0, \pi]$.

In this case, the angle is $x = \frac{7\pi}{6}$.

We check if $\frac{7\pi}{6}$ lies within the interval $[0, \pi]$.

Since $\frac{7\pi}{6} > \pi$, it does not lie in the principal value range.

Therefore, we cannot directly write $\cos^{-1}\left( \cos\frac{7\pi}{6} \right) = \frac{7\pi}{6}$.

We need to find an angle $\theta \in [0, \pi]$ such that $\cos \theta = \cos \frac{7\pi}{6}$.

Using the trigonometric identity $\cos(2\pi - x) = \cos x$, we can write:

$\cos \frac{7\pi}{6} = \cos\left(2\pi - \frac{7\pi}{6}\right)$

$\cos \frac{7\pi}{6} = \cos\left(\frac{12\pi - 7\pi}{6}\right)$

$\cos \frac{7\pi}{6} = \cos\left(\frac{5\pi}{6}\right)$

Now, the angle $\frac{5\pi}{6}$ lies within the principal value range $[0, \pi]$ because $0 \le \frac{5\pi}{6} \le \pi$.

So, we can substitute $\cos \frac{5\pi}{6}$ for $\cos \frac{7\pi}{6}$ in the original expression:

$\cos^{-1}\left( \cos\frac{7\pi}{6} \right) = \cos^{-1}\left( \cos\frac{5\pi}{6} \right)$

Now, since $\frac{5\pi}{6}$ is in the principal value range, we can use the identity $\cos^{-1}(\cos x) = x$:

$\cos^{-1}\left( \cos\frac{5\pi}{6} \right) = \frac{5\pi}{6}$

Therefore, the value of the expression is $\frac{5\pi}{6}$.

Comparing this with the given options, the correct option is (B).

Question 20. sin $\left( \frac{\pi}{3}-sin^{-1} \left( -\frac{1}{2} \right)\right)$ is equal to

(A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) 1

Answer:

We need to find the value of the expression $\sin \left( \frac{\pi}{3}-\sin^{-1} \left( -\frac{1}{2} \right)\right)$.

First, let's find the value of $\sin^{-1} \left( -\frac{1}{2} \right)$.

We know that the principal value branch of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We also know the identity $\sin^{-1}(-x) = -\sin^{-1} x$.

So, $\sin^{-1} \left( -\frac{1}{2} \right) = -\sin^{-1} \left( \frac{1}{2} \right)$.

We know that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$ and $\frac{\pi}{6}$ lies in the principal value range $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Therefore, $\sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6}$.

Substituting this back, we get:

$\sin^{-1} \left( -\frac{1}{2} \right) = -\frac{\pi}{6}$.

Now, substitute this value into the original expression:

$\sin \left( \frac{\pi}{3} - \left(-\frac{\pi}{6}\right) \right)$

$= \sin \left( \frac{\pi}{3} + \frac{\pi}{6} \right)$

To add the angles, find a common denominator:

$= \sin \left( \frac{2\pi}{6} + \frac{\pi}{6} \right)$

$= \sin \left( \frac{3\pi}{6} \right)$

$= \sin \left( \frac{\pi}{2} \right)$

We know that $\sin \left( \frac{\pi}{2} \right) = 1$.

Therefore, the value of the expression is 1.

Comparing this with the given options, the correct option is (D).

Question 21. tan-1 $\sqrt{3}$ - cot-1 ($-\sqrt{3}$) is equal to

(A) π

(B) $-\frac{\pi}{2}$

(C) 0

(D) $2\sqrt{3}$

Answer:

We need to find the value of the expression $\tan^{-1} \sqrt{3} - \cot^{-1} (-\sqrt{3})$.

Let's evaluate each term separately.

First term: $\tan^{-1} \sqrt{3}$

The principal value branch of $\tan^{-1} x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.

We are looking for an angle $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan \theta = \sqrt{3}$.

We know that $\tan \frac{\pi}{3} = \sqrt{3}$.

Since $\frac{\pi}{3}$ lies in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$, we have:

$\tan^{-1} \sqrt{3} = \frac{\pi}{3}$.


Second term: $\cot^{-1} (-\sqrt{3})$

The principal value branch of $\cot^{-1} x$ is $(0, \pi)$.

We are looking for an angle $\phi \in (0, \pi)$ such that $\cot \phi = -\sqrt{3}$.

We use the identity $\cot^{-1}(-x) = \pi - \cot^{-1} x$ for $x > 0$.

Here, $x = \sqrt{3}$. So, $\cot^{-1}(-\sqrt{3}) = \pi - \cot^{-1}(\sqrt{3})$.

Now, we find $\cot^{-1}(\sqrt{3})$. We need an angle $\psi \in (0, \pi)$ such that $\cot \psi = \sqrt{3}$.

We know that $\cot \frac{\pi}{6} = \sqrt{3}$.

Since $\frac{\pi}{6}$ lies in the interval $(0, \pi)$, we have $\cot^{-1}(\sqrt{3}) = \frac{\pi}{6}$.

Substitute this back: $\cot^{-1}(-\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{6\pi - \pi}{6} = \frac{5\pi}{6}$.


Now, calculate the value of the expression:

$\tan^{-1} \sqrt{3} - \cot^{-1} (-\sqrt{3}) = \frac{\pi}{3} - \frac{5\pi}{6}$

To subtract, find a common denominator, which is 6:

$= \frac{2\pi}{6} - \frac{5\pi}{6}$

$= \frac{2\pi - 5\pi}{6}$

$= \frac{-3\pi}{6}$

$= -\frac{\pi}{2}$

Therefore, the value of the expression is $-\frac{\pi}{2}$.

Comparing this with the given options, the correct option is (B).



Example 9 to 13 - Miscellaneous Examples

Example 9: Find the value of sin-1 $\left(sin\frac{3\pi}{5} \right)$

Answer:

We need to find the value of the expression $\sin^{-1} \left(\sin \frac{3\pi}{5} \right)$.

The principal value branch of the inverse sine function, $\sin^{-1} x$, is the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

The identity $\sin^{-1}(\sin x) = x$ is valid only when $x$ lies within this principal value range.

In this problem, the angle is $x = \frac{3\pi}{5}$.

We need to check if $\frac{3\pi}{5}$ lies in the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Comparing $\frac{3\pi}{5}$ with $\frac{\pi}{2}$, we have $\frac{3\pi}{5} = \frac{6\pi}{10}$ and $\frac{\pi}{2} = \frac{5\pi}{10}$.

Since $\frac{6\pi}{10} > \frac{5\pi}{10}$, we have $\frac{3\pi}{5} > \frac{\pi}{2}$.

Therefore, $\frac{3\pi}{5}$ does not lie in the principal value range $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

We cannot directly use the identity $\sin^{-1}(\sin x) = x$.

We need to find an angle $\theta$ within the principal range $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ such that $\sin \theta = \sin \frac{3\pi}{5}$.

We use the trigonometric identity $\sin(\pi - x) = \sin x$.

Let $x = \frac{3\pi}{5}$. Then:

$\sin \frac{3\pi}{5} = \sin\left(\pi - \frac{3\pi}{5}\right)$

$\sin \frac{3\pi}{5} = \sin\left(\frac{5\pi - 3\pi}{5}\right)$

$\sin \frac{3\pi}{5} = \sin\left(\frac{2\pi}{5}\right)$

Now, we check if the angle $\frac{2\pi}{5}$ lies in the principal value range $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

Comparing $\frac{2\pi}{5}$ with $\frac{\pi}{2}$ and $-\frac{\pi}{2}$:

$\frac{2\pi}{5} = \frac{4\pi}{10}$, $\frac{\pi}{2} = \frac{5\pi}{10}$, and $-\frac{\pi}{2} = -\frac{5\pi}{10}$.

Since $-\frac{5\pi}{10} \le \frac{4\pi}{10} \le \frac{5\pi}{10}$, we have $-\frac{\pi}{2} \le \frac{2\pi}{5} \le \frac{\pi}{2}$.

So, the angle $\frac{2\pi}{5}$ lies within the principal value range.

Now we substitute $\sin\left(\frac{2\pi}{5}\right)$ back into the original expression:

$\sin^{-1} \left(\sin \frac{3\pi}{5} \right) = \sin^{-1} \left(\sin \frac{2\pi}{5} \right)$

Since $\frac{2\pi}{5}$ is in the principal value range $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$, we can now apply the identity $\sin^{-1}(\sin x) = x$.

$\sin^{-1} \left(\sin \frac{2\pi}{5} \right) = \frac{2\pi}{5}$

Therefore, the value of the expression is $\mathbf{\frac{2\pi}{5}}$.

Example 10: Show that sin-1 $\frac{3}{5}$ - sin-1 $\frac{8}{17}$ = cos-1 $\frac{84}{85}$

Answer:

To Prove:

$\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$


Proof:

Let $\alpha = \sin^{-1} \frac{3}{5}$. Then $\sin \alpha = \frac{3}{5}$.

Since the principal value range of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, and $\sin \alpha > 0$, we have $0 < \alpha < \frac{\pi}{2}$.

Now, we find $\cos \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$.

$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}$.

Since $0 < \alpha < \frac{\pi}{2}$, $\cos \alpha$ must be positive.

$\cos \alpha = \sqrt{\frac{16}{25}} = \frac{4}{5}$.


Let $\beta = \sin^{-1} \frac{8}{17}$. Then $\sin \beta = \frac{8}{17}$.

Since $0 < \frac{8}{17} \le 1$, we have $0 < \beta < \frac{\pi}{2}$.

Now, we find $\cos \beta$ using the identity $\sin^2 \beta + \cos^2 \beta = 1$.

$\cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{289 - 64}{289} = \frac{225}{289}$.

Since $0 < \beta < \frac{\pi}{2}$, $\cos \beta$ must be positive.

$\cos \beta = \sqrt{\frac{225}{289}} = \frac{15}{17}$.


Now, consider the expression $\cos(\alpha - \beta)$. We use the cosine difference identity:

$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

Substitute the values we found:

$\cos(\alpha - \beta) = \left(\frac{4}{5}\right) \left(\frac{15}{17}\right) + \left(\frac{3}{5}\right) \left(\frac{8}{17}\right)$

$\cos(\alpha - \beta) = \frac{60}{85} + \frac{24}{85}$

$\cos(\alpha - \beta) = \frac{60 + 24}{85} = \frac{84}{85}$

This suggests that $\alpha - \beta$ might be equal to $\cos^{-1} \frac{84}{85}$. To confirm this, we need to ensure that $\alpha - \beta$ lies within the principal value range of $\cos^{-1}$, which is $[0, \pi]$.

We know $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$.

Also, compare $\sin \alpha = \frac{3}{5} = 0.6$ and $\sin \beta = \frac{8}{17} \approx 0.47$.

Since $\sin \alpha > \sin \beta$ and both $\alpha, \beta$ are in the first quadrant, we must have $\alpha > \beta$.

Thus, $\alpha - \beta > 0$.

Since $\alpha < \frac{\pi}{2}$ and $\beta > 0$, we have $\alpha - \beta < \frac{\pi}{2} - 0 = \frac{\pi}{2}$.

So, $0 < \alpha - \beta < \frac{\pi}{2}$.

The interval $(0, \frac{\pi}{2})$ is a subset of the principal value range of $\cos^{-1}$, which is $[0, \pi]$.

Since $\cos(\alpha - \beta) = \frac{84}{85}$ and $0 < \alpha - \beta < \frac{\pi}{2}$, we can conclude that:

$\alpha - \beta = \cos^{-1} \frac{84}{85}$

Substituting back $\alpha = \sin^{-1} \frac{3}{5}$ and $\beta = \sin^{-1} \frac{8}{17}$:

$\sin^{-1} \frac{3}{5} - \sin^{-1} \frac{8}{17} = \cos^{-1} \frac{84}{85}$


Hence Proved.

Example 11: Show that sin-1 $\frac{12}{13}$ + cos-1 $\frac{4}{5}$ + tan-1 $\frac{63}{16}$ = π

Answer:

To Prove:

$\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{16} = \pi$


Proof:

We will evaluate the Left Hand Side (LHS) and show that it equals $\pi$.

LHS = $\sin^{-1} \frac{12}{13} + \cos^{-1} \frac{4}{5} + \tan^{-1} \frac{63}{16}$

First, we convert $\sin^{-1} \frac{12}{13}$ and $\cos^{-1} \frac{4}{5}$ into the form of $\tan^{-1}$.


Convert $\sin^{-1} \frac{12}{13}$ to $\tan^{-1}$ form:

Let $\alpha = \sin^{-1} \frac{12}{13}$. Then $\sin \alpha = \frac{12}{13}$.

Since $\sin \alpha$ is positive, $\alpha$ is in the first quadrant, $0 < \alpha < \frac{\pi}{2}$.

Using $\cos^2 \alpha = 1 - \sin^2 \alpha$:

$\cos^2 \alpha = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169}$.

Since $\alpha$ is in the first quadrant, $\cos \alpha > 0$.

$\cos \alpha = \sqrt{\frac{25}{169}} = \frac{5}{13}$.

Now, $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{12/13}{5/13} = \frac{12}{5}$.

So, $\alpha = \tan^{-1} \frac{12}{5}$. Thus, $\sin^{-1} \frac{12}{13} = \tan^{-1} \frac{12}{5}$.


Convert $\cos^{-1} \frac{4}{5}$ to $\tan^{-1}$ form:

Let $\beta = \cos^{-1} \frac{4}{5}$. Then $\cos \beta = \frac{4}{5}$.

Since $\cos \beta$ is positive, $\beta$ is in the first quadrant, $0 < \beta < \frac{\pi}{2}$.

Using $\sin^2 \beta = 1 - \cos^2 \beta$:

$\sin^2 \beta = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25}$.

Since $\beta$ is in the first quadrant, $\sin \beta > 0$.

$\sin \beta = \sqrt{\frac{9}{25}} = \frac{3}{5}$.

Now, $\tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{3/5}{4/5} = \frac{3}{4}$.

So, $\beta = \tan^{-1} \frac{3}{4}$. Thus, $\cos^{-1} \frac{4}{5} = \tan^{-1} \frac{3}{4}$.


Substitute these back into the LHS:

LHS = $\tan^{-1} \frac{12}{5} + \tan^{-1} \frac{3}{4} + \tan^{-1} \frac{63}{16}$

Now, we use the identity for the sum of two inverse tangents. Let $A = \frac{12}{5}$ and $B = \frac{3}{4}$.

Calculate $AB = \frac{12}{5} \times \frac{3}{4} = \frac{36}{20} = \frac{9}{5}$.

Since $A > 0$, $B > 0$ and $AB = \frac{9}{5} > 1$, we use the identity:

$\tan^{-1} A + \tan^{-1} B = \pi + \tan^{-1} \left( \frac{A+B}{1-AB} \right)$

$\tan^{-1} \frac{12}{5} + \tan^{-1} \frac{3}{4} = \pi + \tan^{-1} \left( \frac{\frac{12}{5} + \frac{3}{4}}{1 - \frac{12}{5} \times \frac{3}{4}} \right)$

$= \pi + \tan^{-1} \left( \frac{\frac{48 + 15}{20}}{1 - \frac{36}{20}} \right)$

$= \pi + \tan^{-1} \left( \frac{\frac{63}{20}}{\frac{20 - 36}{20}} \right)$

$= \pi + \tan^{-1} \left( \frac{\frac{63}{20}}{\frac{-16}{20}} \right)$

$= \pi + \tan^{-1} \left( -\frac{63}{16} \right)$

Using the identity $\tan^{-1}(-x) = -\tan^{-1} x$:

$\tan^{-1} \frac{12}{5} + \tan^{-1} \frac{3}{4} = \pi - \tan^{-1} \left( \frac{63}{16} \right)$


Substitute this result back into the expression for LHS:

LHS = $\left( \tan^{-1} \frac{12}{5} + \tan^{-1} \frac{3}{4} \right) + \tan^{-1} \frac{63}{16}$

LHS = $\left( \pi - \tan^{-1} \frac{63}{16} \right) + \tan^{-1} \frac{63}{16}$

LHS = $\pi - \tan^{-1} \frac{63}{16} + \tan^{-1} \frac{63}{16}$

LHS = $\pi$

Since LHS = $\pi$ and RHS = $\pi$, we have shown that the identity holds.


Hence Proved.

Example 12: Simplify tan-1$\left[ \frac{a\cos\;x\;-\;b\sin\;x}{b\cos\;x\;+\;a\sin\;x} \right]$ , if $\frac{a}{b}$ tan x > -1

Answer:

Given:

The expression $\tan^{-1}\left[ \frac{a\cos x - b\sin x}{b\cos x + a\sin x} \right]$ and the condition $\frac{a}{b} \tan x > -1$.


To Find:

The simplified form of the given expression.


Solution:

Let the given expression be $E$.

$E = \tan^{-1}\left[ \frac{a\cos x - b\sin x}{b\cos x + a\sin x} \right]$

Assuming $b \cos x \neq 0$, we can divide both the numerator and the denominator inside the $\tan^{-1}$ function by $b \cos x$:

$E = \tan^{-1}\left[ \frac{\frac{a\cos x}{b\cos x} - \frac{b\sin x}{b\cos x}}{\frac{b\cos x}{b\cos x} + \frac{a\sin x}{b\cos x}} \right]$

$E = \tan^{-1}\left[ \frac{\frac{a}{b} - \tan x}{1 + \frac{a}{b} \tan x} \right]$

Let $\frac{a}{b} = \tan y$. Then $y = \tan^{-1} \frac{a}{b}$. Substitute $\tan y$ for $\frac{a}{b}$ in the expression:

$E = \tan^{-1}\left[ \frac{\tan y - \tan x}{1 + \tan y \tan x} \right]$

Using the tangent difference identity, $\tan(y-x) = \frac{\tan y - \tan x}{1 + \tan y \tan x}$, we get:

$E = \tan^{-1}[\tan(y-x)]$

Substitute back $y = \tan^{-1} \frac{a}{b}$:

$E = \tan^{-1}\left[\tan\left(\tan^{-1} \frac{a}{b} - x\right)\right]$

We know that $\tan^{-1}(\tan \theta) = \theta$ if $\theta$ lies in the principal value range $(-\frac{\pi}{2}, \frac{\pi}{2})$.

The given condition $\frac{a}{b} \tan x > -1$ implies $1 + \frac{a}{b} \tan x > 0$.

$1 + \frac{a}{b} \tan x = 1 + \tan y \tan x$. This condition ensures that the denominator in the $\tan(y-x)$ formula is positive.

Also, $1 + \frac{a}{b} \tan x = \frac{b \cos x + a \sin x}{b \cos x}$. So, the condition ensures that $b \cos x + a \sin x$ and $b \cos x$ have the same sign and that $b \cos x + a \sin x \neq 0$.

Assuming that the angle $\left(\tan^{-1} \frac{a}{b} - x\right)$ lies within the principal value range $(-\frac{\pi}{2}, \frac{\pi}{2})$, we can simplify the expression as:

$E = \tan^{-1} \frac{a}{b} - x$

This is the simplest form under the assumption on the range of $\tan^{-1} \frac{a}{b} - x$.


Alternate Solution:

We start from the expression obtained after dividing by $b \cos x$:

$E = \tan^{-1}\left[ \frac{\frac{a}{b} - \tan x}{1 + \frac{a}{b} \tan x} \right]$

Let $A = \frac{a}{b}$ and $B = \tan x$. The expression is $E = \tan^{-1}\left[ \frac{A - B}{1 + AB} \right]$.

We use the identity: $\tan^{-1} A - \tan^{-1} B = \tan^{-1} \left( \frac{A-B}{1+AB} \right)$, which holds if $AB > -1$.

In our case, $AB = \frac{a}{b} \tan x$. The condition given in the problem is $\frac{a}{b} \tan x > -1$, which is exactly $AB > -1$.

Therefore, we can apply the identity:

$E = \tan^{-1} A - \tan^{-1} B$

$E = \tan^{-1} \left( \frac{a}{b} \right) - \tan^{-1} (\tan x)$

If we assume that $x$ lies in the principal value range of the tangent function, i.e., $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$, then $\tan^{-1}(\tan x) = x$.

Under this assumption, the expression simplifies to:

$E = \tan^{-1} \frac{a}{b} - x$

This matches the result from the first method.

Example 13: Solve tan–1 2x + tan–1 3x = $\frac{\pi}{4}$

Answer:

Given:

The equation $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$.


To Find:

The value(s) of $x$ that satisfy the equation.


Solution:

We use the identity for the sum of two inverse tangent functions:

$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided that $AB < 1$.

In this case, $A = 2x$ and $B = 3x$. Applying the identity to the given equation:

$\tan^{-1} \left( \frac{2x + 3x}{1 - (2x)(3x)} \right) = \frac{\pi}{4}$

This step is valid only if the condition $AB < 1$ holds, which is $(2x)(3x) < 1$, or $6x^2 < 1$.

Simplifying the expression inside the $\tan^{-1}$ function:

$\tan^{-1} \left( \frac{5x}{1 - 6x^2} \right) = \frac{\pi}{4}$

Taking the tangent of both sides of the equation:

$\frac{5x}{1 - 6x^2} = \tan\left(\frac{\pi}{4}\right)$

Since $\tan\left(\frac{\pi}{4}\right) = 1$, we have:

$\frac{5x}{1 - 6x^2} = 1$

Multiply both sides by $(1 - 6x^2)$, assuming $1 - 6x^2 \neq 0$:

$5x = 1 - 6x^2$

Rearrange the terms to form a quadratic equation:

$6x^2 + 5x - 1 = 0$

We can solve this quadratic equation by factorization. We need two numbers that multiply to $(6)(-1) = -6$ and add up to $5$. These numbers are $6$ and $-1$.

$6x^2 + 6x - x - 1 = 0$

Factor by grouping:

$6x(x + 1) - 1(x + 1) = 0$

$(6x - 1)(x + 1) = 0$

This gives two possible solutions for $x$:

$6x - 1 = 0 \implies x = \frac{1}{6}$

$x + 1 = 0 \implies x = -1$

Now, we must check if these solutions satisfy the condition $6x^2 < 1$ required for the application of the $\tan^{-1}$ sum identity.

For $x = \frac{1}{6}$:

$6x^2 = 6 \left(\frac{1}{6}\right)^2 = 6 \left(\frac{1}{36}\right) = \frac{6}{36} = \frac{1}{6}$.

Since $\frac{1}{6} < 1$, the condition $6x^2 < 1$ is satisfied. Thus, $x = \frac{1}{6}$ is a valid solution.

For $x = -1$:

$6x^2 = 6 (-1)^2 = 6(1) = 6$.

Since $6 \not< 1$, the condition $6x^2 < 1$ is not satisfied. Therefore, $x = -1$ is an extraneous solution.

(Alternatively, if $x=-1$, LHS = $\tan^{-1}(-2) + \tan^{-1}(-3) = -(\tan^{-1}2 + \tan^{-1}3)$. Since $\tan^{-1}2 > 0$ and $\tan^{-1}3 > 0$, the LHS is negative. But RHS = $\frac{\pi}{4}$ is positive. So $x=-1$ cannot be a solution.)

The only valid solution to the equation is $x = \frac{1}{6}$.

Therefore, the solution is $\mathbf{x = \frac{1}{6}}$.



Miscellaneous Exercise on Chapter 2

Find the value of the following:

Question 1. cos-1 $\left( cos \frac{13\pi}{6} \right)$

Answer:

We need to find the value of the expression $\cos^{-1}\left( \cos \frac{13\pi}{6} \right)$.

We know that the principal value branch of the inverse cosine function, $\cos^{-1} x$, is the interval $[0, \pi]$.

The identity $\cos^{-1}(\cos x) = x$ is valid only when $x$ lies within this principal value range $[0, \pi]$.

In this problem, the angle is $x = \frac{13\pi}{6}$.

We check if $\frac{13\pi}{6}$ lies within the interval $[0, \pi]$.

We can write $\frac{13\pi}{6}$ as $2\pi + \frac{\pi}{6}$. Since $2\pi + \frac{\pi}{6} > \pi$, the angle $\frac{13\pi}{6}$ does not lie in the principal value range $[0, \pi]$.

Therefore, we cannot directly use the identity $\cos^{-1}(\cos x) = x$.

We need to find an angle $\theta$ within the principal range $[0, \pi]$ such that $\cos \theta = \cos \frac{13\pi}{6}$.

Using the periodicity of the cosine function, $\cos(2n\pi + x) = \cos x$ for any integer $n$.

$\cos \frac{13\pi}{6} = \cos\left(2\pi + \frac{\pi}{6}\right)$

$\cos \frac{13\pi}{6} = \cos\left(\frac{\pi}{6}\right)$

Now, we check if the angle $\frac{\pi}{6}$ lies in the principal value range $[0, \pi]$.

Since $0 \le \frac{\pi}{6} \le \pi$, the angle $\frac{\pi}{6}$ lies within the principal value range.

So, we can substitute $\cos\left(\frac{\pi}{6}\right)$ back into the original expression:

$\cos^{-1}\left( \cos \frac{13\pi}{6} \right) = \cos^{-1}\left( \cos \frac{\pi}{6} \right)$

Since $\frac{\pi}{6}$ is in the principal value range $[0, \pi]$, we can now apply the identity $\cos^{-1}(\cos x) = x$.

$\cos^{-1}\left( \cos \frac{\pi}{6} \right) = \frac{\pi}{6}$

Therefore, the value of the expression is $\mathbf{\frac{\pi}{6}}$.

Question 2. tan-1 $\left( tan \frac{7\pi}{6} \right)$

Answer:

We need to find the value of the expression $\tan^{-1}\left( \tan \frac{7\pi}{6} \right)$.

We know that the principal value branch of the inverse tangent function, $\tan^{-1} x$, is the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

The identity $\tan^{-1}(\tan x) = x$ is valid only when $x$ lies within this principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

In this problem, the angle is $x = \frac{7\pi}{6}$.

We check if $\frac{7\pi}{6}$ lies within the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Since $\frac{7\pi}{6} > \frac{\pi}{2}$ (as $\frac{7}{6} > \frac{1}{2}$), the angle $\frac{7\pi}{6}$ does not lie in the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Therefore, we cannot directly use the identity $\tan^{-1}(\tan x) = x$.

We need to find an angle $\theta$ within the principal range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\tan \theta = \tan \frac{7\pi}{6}$.

Using the periodicity of the tangent function, $\tan(\pi + x) = \tan x$.

We can write $\frac{7\pi}{6}$ as $\pi + \frac{\pi}{6}$.

$\tan \frac{7\pi}{6} = \tan\left(\pi + \frac{\pi}{6}\right)$

Using the identity, $\tan\left(\pi + \frac{\pi}{6}\right) = \tan\left(\frac{\pi}{6}\right)$.

So, $\tan \frac{7\pi}{6} = \tan\left(\frac{\pi}{6}\right)$.

Now, we check if the angle $\frac{\pi}{6}$ lies in the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Since $-\frac{\pi}{2} < \frac{\pi}{6} < \frac{\pi}{2}$, the angle $\frac{\pi}{6}$ lies within the principal value range.

So, we can substitute $\tan\left(\frac{\pi}{6}\right)$ back into the original expression:

$\tan^{-1}\left( \tan \frac{7\pi}{6} \right) = \tan^{-1}\left( \tan \frac{\pi}{6} \right)$

Since $\frac{\pi}{6}$ is in the principal value range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, we can now apply the identity $\tan^{-1}(\tan x) = x$.

$\tan^{-1}\left( \tan \frac{\pi}{6} \right) = \frac{\pi}{6}$

Therefore, the value of the expression is $\mathbf{\frac{\pi}{6}}$.

Prove that

Question 3. 2sin-1 $\frac{3}{5}$ = tan-1 $\frac{24}{7}$

Answer:

To Prove:

$2\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{24}{7}$


Proof:

Let the Left Hand Side (LHS) be $2\sin^{-1} \frac{3}{5}$.

First, we convert $\sin^{-1} \frac{3}{5}$ into the form of $\tan^{-1}$.

Let $\alpha = \sin^{-1} \frac{3}{5}$. This implies $\sin \alpha = \frac{3}{5}$.

Since the principal value range of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, and $\sin \alpha = \frac{3}{5}$ is positive, $\alpha$ must lie in the first quadrant, i.e., $0 < \alpha < \frac{\pi}{2}$.

We find $\cos \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}$.

Since $\alpha$ is in the first quadrant, $\cos \alpha$ is positive.

$\cos \alpha = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, we can find $\tan \alpha$:

$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{3/5}{4/5} = \frac{3}{4}$.

Since $\tan \alpha = \frac{3}{4}$ and $0 < \alpha < \frac{\pi}{2}$, we have $\alpha = \tan^{-1} \frac{3}{4}$.

So, $\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$.


Substitute this back into the LHS:

LHS = $2\sin^{-1} \frac{3}{5} = 2\tan^{-1} \frac{3}{4}$.

Now we use the identity for $2\tan^{-1} x$:

$2\tan^{-1} x = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, provided $|x| < 1$.

Here, $x = \frac{3}{4}$. Since $|\frac{3}{4}| = \frac{3}{4} < 1$, the identity is applicable.

LHS = $2\tan^{-1} \frac{3}{4} = \tan^{-1}\left(\frac{2 \times \frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2}\right)$

$= \tan^{-1}\left(\frac{\frac{6}{4}}{1 - \frac{9}{16}}\right)$

$= \tan^{-1}\left(\frac{\frac{3}{2}}{\frac{16 - 9}{16}}\right)$

$= \tan^{-1}\left(\frac{\frac{3}{2}}{\frac{7}{16}}\right)$

$= \tan^{-1}\left(\frac{3}{2} \times \frac{16}{7}\right)$

$= \tan^{-1}\left(\frac{3 \times \cancel{16}^8}{\cancel{2} \times 7}\right)$

$= \tan^{-1}\left(\frac{24}{7}\right)$

The Right Hand Side (RHS) of the equation to be proved is $\tan^{-1} \frac{24}{7}$.

Since LHS = $\tan^{-1} \frac{24}{7}$ and RHS = $\tan^{-1} \frac{24}{7}$, we have LHS = RHS.


Hence Proved.

Question 4. sin-1 $\frac{8}{17}$ + sin-1 $\frac{3}{5}$ = tan-1 $\frac{77}{36}$

Answer:

To Prove:

$\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \tan^{-1} \frac{77}{36}$


Proof:

Let the Left Hand Side (LHS) be $\sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5}$.

We will convert both inverse sine terms to inverse tangent terms.


Convert $\sin^{-1} \frac{8}{17}$ to $\tan^{-1}$ form:

Let $\alpha = \sin^{-1} \frac{8}{17}$. This implies $\sin \alpha = \frac{8}{17}$.

Since $\sin \alpha$ is positive, and the range of $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, $\alpha$ must be in the first quadrant, i.e., $0 < \alpha < \frac{\pi}{2}$.

Using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{289 - 64}{289} = \frac{225}{289}$.

Since $\alpha$ is in the first quadrant, $\cos \alpha > 0$.

$\cos \alpha = \sqrt{\frac{225}{289}} = \frac{15}{17}$.

Now, $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{8/17}{15/17} = \frac{8}{15}$.

Therefore, $\sin^{-1} \frac{8}{17} = \tan^{-1} \frac{8}{15}$.


Convert $\sin^{-1} \frac{3}{5}$ to $\tan^{-1}$ form:

Let $\beta = \sin^{-1} \frac{3}{5}$. This implies $\sin \beta = \frac{3}{5}$.

Since $\sin \beta$ is positive, $\beta$ must be in the first quadrant, i.e., $0 < \beta < \frac{\pi}{2}$.

Using the identity $\sin^2 \beta + \cos^2 \beta = 1$:

$\cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}$.

Since $\beta$ is in the first quadrant, $\cos \beta > 0$.

$\cos \beta = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, $\tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{3/5}{4/5} = \frac{3}{4}$.

Therefore, $\sin^{-1} \frac{3}{5} = \tan^{-1} \frac{3}{4}$.


Substitute the $\tan^{-1}$ forms back into the LHS:

LHS = $\tan^{-1} \frac{8}{15} + \tan^{-1} \frac{3}{4}$.

We use the identity for the sum of two inverse tangents:

$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided $AB < 1$.

Here $A = \frac{8}{15}$ and $B = \frac{3}{4}$.

Check the condition: $AB = \frac{8}{15} \times \frac{3}{4} = \frac{24}{60} = \frac{2}{5}$.

Since $AB = \frac{2}{5} < 1$, the identity is applicable.

LHS = $\tan^{-1} \left( \frac{\frac{8}{15} + \frac{3}{4}}{1 - \frac{8}{15} \times \frac{3}{4}} \right)$

$= \tan^{-1} \left( \frac{\frac{32 + 45}{60}}{1 - \frac{24}{60}} \right)$

$= \tan^{-1} \left( \frac{\frac{77}{60}}{\frac{60 - 24}{60}} \right)$

$= \tan^{-1} \left( \frac{\frac{77}{60}}{\frac{36}{60}} \right)$

$= \tan^{-1} \left( \frac{77}{\cancel{60}} \times \frac{\cancel{60}}{36} \right)$

$= \tan^{-1} \left( \frac{77}{36} \right)$

The Right Hand Side (RHS) of the equation to be proved is $\tan^{-1} \frac{77}{36}$.

Since LHS = $\tan^{-1} \frac{77}{36}$ and RHS = $\tan^{-1} \frac{77}{36}$, we have LHS = RHS.


Hence Proved.

Question 5. cos-1 $\frac{4}{5}$ + cos-1 $\frac{12}{13}$ = cos-1 $\frac{33}{65}$

Answer:

To Prove:

$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$


Proof:

Let the Left Hand Side (LHS) be $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$.

Let $\alpha = \cos^{-1} \frac{4}{5}$. This implies $\cos \alpha = \frac{4}{5}$.

Since the principal value range of $\cos^{-1} x$ is $[0, \pi]$, and $\cos \alpha = \frac{4}{5}$ is positive, $\alpha$ must lie in the first quadrant, i.e., $0 < \alpha < \frac{\pi}{2}$.

Now, we find $\sin \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{25 - 16}{25} = \frac{9}{25}$.

Since $\alpha$ is in the first quadrant, $\sin \alpha$ is positive.

$\sin \alpha = \sqrt{\frac{9}{25}} = \frac{3}{5}$.


Let $\beta = \cos^{-1} \frac{12}{13}$. This implies $\cos \beta = \frac{12}{13}$.

Since $\cos \beta = \frac{12}{13}$ is positive, $\beta$ must also lie in the first quadrant, i.e., $0 < \beta < \frac{\pi}{2}$.

Now, we find $\sin \beta$ using the identity $\sin^2 \beta + \cos^2 \beta = 1$:

$\sin^2 \beta = 1 - \cos^2 \beta = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169}$.

Since $\beta$ is in the first quadrant, $\sin \beta$ is positive.

$\sin \beta = \sqrt{\frac{25}{169}} = \frac{5}{13}$.


Now, consider the expression $\cos(\alpha + \beta)$. We use the cosine sum identity:

$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Substitute the values we found:

$\cos(\alpha + \beta) = \left(\frac{4}{5}\right) \left(\frac{12}{13}\right) - \left(\frac{3}{5}\right) \left(\frac{5}{13}\right)$

$\cos(\alpha + \beta) = \frac{48}{65} - \frac{15}{65}$

$\cos(\alpha + \beta) = \frac{48 - 15}{65} = \frac{33}{65}$

Since $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$, their sum $\alpha + \beta$ must satisfy $0 < \alpha + \beta < \pi$.

The interval $(0, \pi)$ is within the principal value range of $\cos^{-1}$, which is $[0, \pi]$.

Since $\cos(\alpha + \beta) = \frac{33}{65}$ and $0 < \alpha + \beta < \pi$, we can conclude that:

$\alpha + \beta = \cos^{-1} \frac{33}{65}$

Substitute back $\alpha = \cos^{-1} \frac{4}{5}$ and $\beta = \cos^{-1} \frac{12}{13}$:

$\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13} = \cos^{-1} \frac{33}{65}$

This is the expression we wanted to prove.


Hence Proved.


Alternate Method using Identity:

We use the identity: $\cos^{-1} x + \cos^{-1} y = \cos^{-1}(xy - \sqrt{1-x^2}\sqrt{1-y^2})$ for $x, y \in [0, 1]$.

Let $x = \frac{4}{5}$ and $y = \frac{12}{13}$. Both are in $[0, 1]$.

LHS = $\cos^{-1} \frac{4}{5} + \cos^{-1} \frac{12}{13}$

$= \cos^{-1} \left( \left(\frac{4}{5}\right)\left(\frac{12}{13}\right) - \sqrt{1-\left(\frac{4}{5}\right)^2} \sqrt{1-\left(\frac{12}{13}\right)^2} \right)$

$= \cos^{-1} \left( \frac{48}{65} - \sqrt{1-\frac{16}{25}} \sqrt{1-\frac{144}{169}} \right)$

$= \cos^{-1} \left( \frac{48}{65} - \sqrt{\frac{9}{25}} \sqrt{\frac{25}{169}} \right)$

$= \cos^{-1} \left( \frac{48}{65} - \left(\frac{3}{5}\right) \left(\frac{5}{13}\right) \right)$

$= \cos^{-1} \left( \frac{48}{65} - \frac{15}{65} \right)$

$= \cos^{-1} \left( \frac{33}{65} \right)$

LHS = RHS.


Hence Proved.

Question 6. cos-1 $\frac{12}{13}$ + sin-1 $\frac{3}{5}$ = sin-1 $\frac{56}{65}$

Answer:

To Prove:

$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$


Proof:

Let the Left Hand Side (LHS) be $\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5}$.

Let $\alpha = \cos^{-1} \frac{12}{13}$. This implies $\cos \alpha = \frac{12}{13}$.

Since the principal value range of $\cos^{-1} x$ is $[0, \pi]$, and $\cos \alpha = \frac{12}{13}$ is positive, $\alpha$ must lie in the first quadrant, i.e., $0 < \alpha < \frac{\pi}{2}$.

Now, we find $\sin \alpha$ using the identity $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{169 - 144}{169} = \frac{25}{169}$.

Since $\alpha$ is in the first quadrant, $\sin \alpha$ is positive.

$\sin \alpha = \sqrt{\frac{25}{169}} = \frac{5}{13}$.


Let $\beta = \sin^{-1} \frac{3}{5}$. This implies $\sin \beta = \frac{3}{5}$.

Since the principal value range of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, and $\sin \beta = \frac{3}{5}$ is positive, $\beta$ must lie in the first quadrant, i.e., $0 < \beta < \frac{\pi}{2}$.

Now, we find $\cos \beta$ using the identity $\sin^2 \beta + \cos^2 \beta = 1$:

$\cos^2 \beta = 1 - \sin^2 \beta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}$.

Since $\beta$ is in the first quadrant, $\cos \beta$ is positive.

$\cos \beta = \sqrt{\frac{16}{25}} = \frac{4}{5}$.


Now, consider the expression $\sin(\alpha + \beta)$. We use the sine sum identity:

$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

Substitute the values we found:

$\sin(\alpha + \beta) = \left(\frac{5}{13}\right) \left(\frac{4}{5}\right) + \left(\frac{12}{13}\right) \left(\frac{3}{5}\right)$

$\sin(\alpha + \beta) = \frac{20}{65} + \frac{36}{65}$

$\sin(\alpha + \beta) = \frac{20 + 36}{65} = \frac{56}{65}$

Since $0 < \alpha < \frac{\pi}{2}$ and $0 < \beta < \frac{\pi}{2}$, their sum $\alpha + \beta$ must satisfy $0 < \alpha + \beta < \pi$.

To determine if $\alpha + \beta$ is in the range of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, we check the sign of $\cos(\alpha+\beta)$:

$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

$\cos(\alpha + \beta) = \left(\frac{12}{13}\right) \left(\frac{4}{5}\right) - \left(\frac{5}{13}\right) \left(\frac{3}{5}\right)$

$\cos(\alpha + \beta) = \frac{48}{65} - \frac{15}{65} = \frac{33}{65}$

Since $\sin(\alpha + \beta) > 0$ and $\cos(\alpha + \beta) > 0$, the angle $\alpha + \beta$ must lie in the first quadrant, i.e., $0 < \alpha + \beta < \frac{\pi}{2}$.

The interval $(0, \frac{\pi}{2})$ is within the principal value range of $\sin^{-1}$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Since $\sin(\alpha + \beta) = \frac{56}{65}$ and $0 < \alpha + \beta < \frac{\pi}{2}$, we can conclude that:

$\alpha + \beta = \sin^{-1} \frac{56}{65}$

Substitute back $\alpha = \cos^{-1} \frac{12}{13}$ and $\beta = \sin^{-1} \frac{3}{5}$:

$\cos^{-1} \frac{12}{13} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{56}{65}$

This is the expression we wanted to prove.


Hence Proved.

Question 7. tan-1 $\frac{63}{16}$ = sin-1 $\frac{5}{13}$ + cos-1 $\frac{3}{5}$

Answer:

To Prove:

$\tan^{-1} \frac{63}{16} = \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$


Proof:

We will start with the Right Hand Side (RHS) and show that it equals the Left Hand Side (LHS).

RHS = $\sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5}$

We convert both terms on the RHS to the $\tan^{-1}$ form.


Convert $\sin^{-1} \frac{5}{13}$ to $\tan^{-1}$ form:

Let $\alpha = \sin^{-1} \frac{5}{13}$. Then $\sin \alpha = \frac{5}{13}$.

Since $\sin \alpha > 0$, $\alpha$ is in the first quadrant ($0 < \alpha < \frac{\pi}{2}$).

Using $\cos^2 \alpha = 1 - \sin^2 \alpha$:

$\cos^2 \alpha = 1 - \left(\frac{5}{13}\right)^2 = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169}$.

Since $\alpha$ is in the first quadrant, $\cos \alpha > 0$.

$\cos \alpha = \sqrt{\frac{144}{169}} = \frac{12}{13}$.

Now, $\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{5/13}{12/13} = \frac{5}{12}$.

So, $\sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12}$.


Convert $\cos^{-1} \frac{3}{5}$ to $\tan^{-1}$ form:

Let $\beta = \cos^{-1} \frac{3}{5}$. Then $\cos \beta = \frac{3}{5}$.

Since $\cos \beta > 0$, $\beta$ is in the first quadrant ($0 < \beta < \frac{\pi}{2}$).

Using $\sin^2 \beta = 1 - \cos^2 \beta$:

$\sin^2 \beta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25}$.

Since $\beta$ is in the first quadrant, $\sin \beta > 0$.

$\sin \beta = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, $\tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{4/5}{3/5} = \frac{4}{3}$.

So, $\cos^{-1} \frac{3}{5} = \tan^{-1} \frac{4}{3}$.


Substitute these $\tan^{-1}$ forms back into the RHS:

RHS = $\tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3}$

We use the identity for the sum of two inverse tangents:

$\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided $A > 0, B > 0, AB < 1$.

Let $A = \frac{5}{12}$ and $B = \frac{4}{3}$. Both are positive.

Check the condition $AB$:

$AB = \frac{5}{12} \times \frac{4}{3} = \frac{20}{36} = \frac{5}{9}$.

Since $AB = \frac{5}{9} < 1$, the identity is applicable.

RHS = $\tan^{-1} \left( \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right)$

$= \tan^{-1} \left( \frac{\frac{5 + 16}{12}}{1 - \frac{20}{36}} \right)$

$= \tan^{-1} \left( \frac{\frac{21}{12}}{\frac{36 - 20}{36}} \right)$

$= \tan^{-1} \left( \frac{\frac{21}{12}}{\frac{16}{36}} \right)$

$= \tan^{-1} \left( \frac{21}{12} \times \frac{36}{16} \right)$

$= \tan^{-1} \left( \frac{21 \times \cancel{36}^3}{\cancel{12} \times 16} \right)$

$= \tan^{-1} \left( \frac{21 \times 3}{16} \right)$

$= \tan^{-1} \left( \frac{63}{16} \right)$

The Left Hand Side (LHS) is $\tan^{-1} \frac{63}{16}$.

Since RHS = $\tan^{-1} \frac{63}{16}$ and LHS = $\tan^{-1} \frac{63}{16}$, we have RHS = LHS.


Hence Proved.

Question 8. tan-1 $\frac{1}{5}$ + tan-1 $\frac{1}{7}$ + tan-1 $\frac{1}{3}$ + tan-1 $\frac{1}{8}$ = $\frac{\pi}{4}$

Answer:

To Prove:

$\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} = \frac{\pi}{4}$


Proof:

Let the Left Hand Side (LHS) be $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8}$.

We will group the terms and apply the identity $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \left( \frac{A+B}{1-AB} \right)$, provided $AB < 1$.

Consider the first two terms: $\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7}$.

Here $A = \frac{1}{5}$ and $B = \frac{1}{7}$. $AB = \frac{1}{5} \times \frac{1}{7} = \frac{1}{35}$. Since $\frac{1}{35} < 1$, the identity is applicable.

$\tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} = \tan^{-1} \left( \frac{\frac{1}{5} + \frac{1}{7}}{1 - \frac{1}{5} \times \frac{1}{7}} \right)$

$= \tan^{-1} \left( \frac{\frac{7+5}{35}}{1 - \frac{1}{35}} \right)$

$= \tan^{-1} \left( \frac{\frac{12}{35}}{\frac{35-1}{35}} \right)$

$= \tan^{-1} \left( \frac{\frac{12}{35}}{\frac{34}{35}} \right)$

$= \tan^{-1} \left( \frac{12}{34} \right) = \tan^{-1} \left( \frac{6}{17} \right)$


Consider the last two terms: $\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8}$.

Here $A = \frac{1}{3}$ and $B = \frac{1}{8}$. $AB = \frac{1}{3} \times \frac{1}{8} = \frac{1}{24}$. Since $\frac{1}{24} < 1$, the identity is applicable.

$\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} = \tan^{-1} \left( \frac{\frac{1}{3} + \frac{1}{8}}{1 - \frac{1}{3} \times \frac{1}{8}} \right)$

$= \tan^{-1} \left( \frac{\frac{8+3}{24}}{1 - \frac{1}{24}} \right)$

$= \tan^{-1} \left( \frac{\frac{11}{24}}{\frac{24-1}{24}} \right)$

$= \tan^{-1} \left( \frac{\frac{11}{24}}{\frac{23}{24}} \right)$

$= \tan^{-1} \left( \frac{11}{23} \right)$


Now substitute these results back into the LHS:

LHS = $\left( \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} \right) + \left( \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{8} \right)$

LHS = $\tan^{-1} \frac{6}{17} + \tan^{-1} \frac{11}{23}$

Apply the sum identity again. Here $A = \frac{6}{17}$ and $B = \frac{11}{23}$.

Check the condition $AB$: $AB = \frac{6}{17} \times \frac{11}{23} = \frac{66}{391}$. Since $66 < 391$, $AB < 1$, the identity is applicable.

LHS = $\tan^{-1} \left( \frac{\frac{6}{17} + \frac{11}{23}}{1 - \frac{6}{17} \times \frac{11}{23}} \right)$

$= \tan^{-1} \left( \frac{\frac{6 \times 23 + 11 \times 17}{17 \times 23}}{1 - \frac{66}{391}} \right)$

$= \tan^{-1} \left( \frac{\frac{138 + 187}{391}}{\frac{391 - 66}{391}} \right)$

$= \tan^{-1} \left( \frac{\frac{325}{391}}{\frac{325}{391}} \right)$

$= \tan^{-1} (1)$

We know that the principal value of $\tan^{-1}(1)$ is $\frac{\pi}{4}$.

LHS = $\frac{\pi}{4}$

The Right Hand Side (RHS) is $\frac{\pi}{4}$.

Since LHS = RHS, the identity is proved.


Hence Proved.

Prove that

Question 9. tan-1 $\sqrt{x}$ = $\frac{1}{2}$ cos-1 $\left( \frac{1-x}{1+x} \right)$ , x ∈ [0, 1]

Answer:

To Prove:

$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)$ for $x \in [0, 1]$.


Proof:

Let $\tan^{-1} \sqrt{x} = y$.

Since $x \in [0, 1]$, we have $\sqrt{x} \in [0, 1]$.

The range of $\tan^{-1} u$ for $u \in [0, 1]$ is $[0, \frac{\pi}{4}]$.

So, $y = \tan^{-1} \sqrt{x} \in [0, \frac{\pi}{4}]$.

From $\tan^{-1} \sqrt{x} = y$, we have $\tan y = \sqrt{x}$.

Squaring both sides, we get $\tan^2 y = x$.

Now, consider the Right Hand Side (RHS) of the equation we want to prove:

RHS = $\frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)$.

Substitute $x = \tan^2 y$ into the expression inside $\cos^{-1}$:

$\frac{1-x}{1+x} = \frac{1-\tan^2 y}{1+\tan^2 y}$

Using the trigonometric identity $\cos(2y) = \frac{1-\tan^2 y}{1+\tan^2 y}$, we have:

$\frac{1-x}{1+x} = \cos(2y)$

Substitute this back into the RHS expression:

RHS = $\frac{1}{2} \cos^{-1} (\cos(2y))$

We know that $\cos^{-1}(\cos \theta) = \theta$ if $\theta$ lies in the principal value range $[0, \pi]$.

We need to check the range of $2y$.

Since $y \in [0, \frac{\pi}{4}]$, multiplying by 2 gives $2y \in [0, \frac{\pi}{2}]$.

The interval $[0, \frac{\pi}{2}]$ is a subset of the principal value range $[0, \pi]$.

Therefore, $\cos^{-1}(\cos(2y)) = 2y$.

Substituting this into the expression for RHS:

RHS = $\frac{1}{2} (2y) = y$.

We started by letting $y = \tan^{-1} \sqrt{x}$, which is the Left Hand Side (LHS).

So, we have shown that RHS = $y$ and LHS = $y$.

Therefore, LHS = RHS, i.e.,

$\tan^{-1} \sqrt{x} = \frac{1}{2} \cos^{-1} \left( \frac{1-x}{1+x} \right)$.


Hence Proved.

Question 10. cot-1 $\left( \frac{\sqrt{1+sin\;x}\;+\;\sqrt{1-sin\;x}}{\sqrt{1+sin\;x}\;-\;\sqrt{1-sin\;x}} \right)$ = $\frac{x}{2}$ , x ∈ $\left( 0,\frac{\pi}{4} \right)$

Answer:

To Prove:

$\cot^{-1} \left( \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \right) = \frac{x}{2}$ for $x \in \left( 0, \frac{\pi}{4} \right)$.


Proof:

Let the Left Hand Side (LHS) be $\cot^{-1} \left( \frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}} \right)$.

We first simplify the terms under the square root using the identities:

$1 = \cos^2(x/2) + \sin^2(x/2)$

$\sin x = 2 \sin(x/2) \cos(x/2)$

So, $1 + \sin x = \cos^2(x/2) + \sin^2(x/2) + 2 \sin(x/2) \cos(x/2) = (\cos(x/2) + \sin(x/2))^2$.

And, $1 - \sin x = \cos^2(x/2) + \sin^2(x/2) - 2 \sin(x/2) \cos(x/2) = (\cos(x/2) - \sin(x/2))^2$.

Now, consider the square roots:

$\sqrt{1+\sin x} = \sqrt{(\cos(x/2) + \sin(x/2))^2} = |\cos(x/2) + \sin(x/2)|$.

$\sqrt{1-\sin x} = \sqrt{(\cos(x/2) - \sin(x/2))^2} = |\cos(x/2) - \sin(x/2)|$.

We are given that $x \in \left( 0, \frac{\pi}{4} \right)$. This implies $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$.

For $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$:

Both $\cos(x/2)$ and $\sin(x/2)$ are positive. Thus, $\cos(x/2) + \sin(x/2) > 0$.

Also, in the interval $(0, \frac{\pi}{4})$, the cosine function is greater than the sine function. Since $\frac{x}{2} \in (0, \frac{\pi}{8}) \subset (0, \frac{\pi}{4})$, we have $\cos(x/2) > \sin(x/2)$.

Therefore, $\cos(x/2) - \sin(x/2) > 0$.

So we can remove the absolute value signs:

$\sqrt{1+\sin x} = \cos(x/2) + \sin(x/2)$.

$\sqrt{1-\sin x} = \cos(x/2) - \sin(x/2)$.

Substitute these simplified expressions into the fraction inside $\cot^{-1}$:

Numerator = $\sqrt{1+\sin x} + \sqrt{1-\sin x} = (\cos(x/2) + \sin(x/2)) + (\cos(x/2) - \sin(x/2)) = 2\cos(x/2)$.

Denominator = $\sqrt{1+\sin x} - \sqrt{1-\sin x} = (\cos(x/2) + \sin(x/2)) - (\cos(x/2) - \sin(x/2)) = 2\sin(x/2)$.

The fraction becomes $\frac{2\cos(x/2)}{2\sin(x/2)} = \frac{\cos(x/2)}{\sin(x/2)} = \cot(x/2)$.

So, the LHS simplifies to:

LHS = $\cot^{-1}(\cot(x/2))$.

We know that $\cot^{-1}(\cot y) = y$ if $y$ lies in the principal value range of $\cot^{-1}$, which is $(0, \pi)$.

We found that $\frac{x}{2} \in \left( 0, \frac{\pi}{8} \right)$.

Since $\left( 0, \frac{\pi}{8} \right)$ is a subset of $(0, \pi)$, the identity $\cot^{-1}(\cot(x/2)) = x/2$ is applicable.

Therefore, LHS = $\frac{x}{2}$.

The Right Hand Side (RHS) is $\frac{x}{2}$.

Since LHS = RHS, the identity is proved.


Hence Proved.

Question 11. tan-1 $\left( \frac{\sqrt{1+x}\;-\;\sqrt{1-x}}{\sqrt{1+x}\;+\;\sqrt{1-x}} \right)$ = $\frac{\pi}{4}$ - $\frac{1}{2}$ cos-1 x , $-\frac{1}{\sqrt{2}}$ ≤ x ≤ 1

[Hint: Put x = cos 2θ]

Answer:

To Prove:

$\tan^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right) = \frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$ for $x \in \left[-\frac{1}{\sqrt{2}}, 1\right]$.


Proof:

Let the Left Hand Side (LHS) be $\tan^{-1} \left( \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} \right)$.

Following the hint, let $x = \cos 2\theta$.

First, determine the range for $2\theta$. Since $x \in \left[-\frac{1}{\sqrt{2}}, 1\right]$, we have:

$-\frac{1}{\sqrt{2}} \le \cos 2\theta \le 1$.

The principal value range for $\cos^{-1}$ is $[0, \pi]$. Within this range:

$\cos(0) = 1$

$\cos\left(\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}$

So, the inequality implies $0 \le 2\theta \le \frac{3\pi}{4}$.

Dividing by 2 gives the range for $\theta$: $0 \le \theta \le \frac{3\pi}{8}$.

Now, substitute $x = \cos 2\theta$ into the LHS expression.

We use the identities $1 + \cos 2\theta = 2 \cos^2 \theta$ and $1 - \cos 2\theta = 2 \sin^2 \theta$.

$\sqrt{1+x} = \sqrt{1+\cos 2\theta} = \sqrt{2 \cos^2 \theta} = \sqrt{2} |\cos \theta|$.

$\sqrt{1-x} = \sqrt{1-\cos 2\theta} = \sqrt{2 \sin^2 \theta} = \sqrt{2} |\sin \theta|$.

Since $\theta \in \left[0, \frac{3\pi}{8}\right]$, which is in the first quadrant (as $\frac{3\pi}{8} < \frac{\pi}{2}$), both $\cos \theta$ and $\sin \theta$ are non-negative.

Therefore, $|\cos \theta| = \cos \theta$ and $|\sin \theta| = \sin \theta$.

$\sqrt{1+x} = \sqrt{2} \cos \theta$.

$\sqrt{1-x} = \sqrt{2} \sin \theta$.

Substitute these into the fraction inside $\tan^{-1}$:

$\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}} = \frac{\sqrt{2} \cos \theta - \sqrt{2} \sin \theta}{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta}$

$= \frac{\sqrt{2}(\cos \theta - \sin \theta)}{\sqrt{2}(\cos \theta + \sin \theta)} = \frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta}$.

Divide the numerator and denominator by $\cos \theta$ (note that $\cos \theta \neq 0$ since $\theta \le \frac{3\pi}{8} < \frac{\pi}{2}$):

$\frac{\frac{\cos \theta}{\cos \theta} - \frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta}} = \frac{1 - \tan \theta}{1 + \tan \theta}$.

Using the identity $\tan(\frac{\pi}{4} - \theta) = \frac{\tan(\pi/4) - \tan \theta}{1 + \tan(\pi/4)\tan \theta} = \frac{1 - \tan \theta}{1 + \tan \theta}$.

So the expression inside $\tan^{-1}$ is $\tan(\frac{\pi}{4} - \theta)$.

LHS = $\tan^{-1}\left( \tan(\frac{\pi}{4} - \theta) \right)$.

Now we check the range of the angle $\frac{\pi}{4} - \theta$.

Since $0 \le \theta \le \frac{3\pi}{8}$, we have $-\frac{3\pi}{8} \le -\theta \le 0$.

Adding $\frac{\pi}{4}$ throughout: $\frac{\pi}{4} - \frac{3\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4} + 0$.

$\frac{2\pi - 3\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4}$.

$-\frac{\pi}{8} \le \frac{\pi}{4} - \theta \le \frac{\pi}{4}$.

The principal value range for $\tan^{-1}$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. Since $[-\frac{\pi}{8}, \frac{\pi}{4}] \subset (-\frac{\pi}{2}, \frac{\pi}{2})$, we can apply the identity $\tan^{-1}(\tan y) = y$.

LHS = $\frac{\pi}{4} - \theta$.

Finally, we express $\theta$ in terms of $x$. From $x = \cos 2\theta$, we take $\cos^{-1}$ of both sides:

$\cos^{-1} x = \cos^{-1}(\cos 2\theta)$.

Since $2\theta \in [0, \frac{3\pi}{4}]$, which is within the principal range $[0, \pi]$ for $\cos^{-1}$, we have:

$\cos^{-1} x = 2\theta$.

So, $\theta = \frac{1}{2} \cos^{-1} x$.

Substitute this back into the expression for LHS:

LHS = $\frac{\pi}{4} - \frac{1}{2} \cos^{-1} x$.

This is equal to the Right Hand Side (RHS).


Hence Proved.

Question 12. $\frac{9\pi}{8}$ - $\frac{9}{4}$ sin-1 $\frac{1}{3}$ = $\frac{9}{4}$ sin-1 $\frac{2\sqrt{2}}{3}$

Answer:

To Prove:

$\frac{9\pi}{8} - \frac{9}{4} \sin^{-1} \frac{1}{3} = \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}$


Proof:

We start by rearranging the equation to be proved:

$\frac{9\pi}{8} = \frac{9}{4} \sin^{-1} \frac{1}{3} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}$

Factor out $\frac{9}{4}$ from the Right Hand Side (RHS):

$\frac{9\pi}{8} = \frac{9}{4} \left( \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3} \right)$

Divide both sides by $\frac{9}{4}$:

$\frac{9\pi}{8} \times \frac{4}{9} = \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3}$

$\frac{\cancel{9}\pi}{\cancel{8}_2} \times \frac{\cancel{4}}{\cancel{9}} = \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3}$

$\frac{\pi}{2} = \sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3}$

Now, we need to prove this simplified identity: $\sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3} = \frac{\pi}{2}$.

This is equivalent to showing that $\sin^{-1} \frac{2\sqrt{2}}{3} = \frac{\pi}{2} - \sin^{-1} \frac{1}{3}$.

We know the fundamental identity: $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$ for $x \in [-1, 1]$.

Using this identity with $x = \frac{1}{3}$ (which is in $[-1, 1]$), we have:

$\cos^{-1} \frac{1}{3} = \frac{\pi}{2} - \sin^{-1} \frac{1}{3}$.

So, we need to prove that $\sin^{-1} \frac{2\sqrt{2}}{3} = \cos^{-1} \frac{1}{3}$.

Let $\alpha = \cos^{-1} \frac{1}{3}$. This implies $\cos \alpha = \frac{1}{3}$.

Since the range of $\cos^{-1}$ is $[0, \pi]$ and $\cos \alpha > 0$, $\alpha$ must be in the interval $[0, \frac{\pi}{2})$.

Now, find $\sin \alpha$ using $\sin^2 \alpha + \cos^2 \alpha = 1$:

$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9}$.

Since $\alpha \in [0, \frac{\pi}{2})$, $\sin \alpha \ge 0$.

$\sin \alpha = \sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3}$.

From $\sin \alpha = \frac{2\sqrt{2}}{3}$, and knowing that $\alpha \in [0, \frac{\pi}{2})$ (which is within the range $[-\frac{\pi}{2}, \frac{\pi}{2}]$ for $\sin^{-1}$), we can write:

$\alpha = \sin^{-1} \frac{2\sqrt{2}}{3}$.

So, we have shown that $\cos^{-1} \frac{1}{3} = \sin^{-1} \frac{2\sqrt{2}}{3}$.

Substituting this back into our requirement:

$\frac{\pi}{2} - \sin^{-1} \frac{1}{3} = \cos^{-1} \frac{1}{3} = \sin^{-1} \frac{2\sqrt{2}}{3}$.

Thus, $\sin^{-1} \frac{1}{3} + \sin^{-1} \frac{2\sqrt{2}}{3} = \frac{\pi}{2}$ is true.

Since this simplified identity is true, the original equation is also true.


Hence Proved.

Solve the following equations:

Question 13. 2tan–1 (cos x) = tan–1 (2 cosec x)

Answer:

Given Equation:

$2\tan^{-1} (\cos x) = \tan^{-1} (2 \text{cosec} x)$


To Find:

The value(s) of $x$ that satisfy the equation.


Solution:

We use the identity $2\tan^{-1} y = \tan^{-1}\left(\frac{2y}{1-y^2}\right)$, which is valid for $|y| < 1$.

Let $y = \cos x$. The identity requires $|\cos x| < 1$. This implies $\cos x \neq 1$ and $\cos x \neq -1$, so $x$ cannot be an integer multiple of $\pi$, i.e., $x \neq n\pi$ for any integer $n$.

Applying the identity to the left side of the given equation:

$\tan^{-1}\left(\frac{2\cos x}{1-\cos^2 x}\right) = \tan^{-1} (2 \text{cosec} x)$

Using the trigonometric identity $1 - \cos^2 x = \sin^2 x$, we get:

$\tan^{-1}\left(\frac{2\cos x}{\sin^2 x}\right) = \tan^{-1} (2 \text{cosec} x)$

Since $\tan^{-1} A = \tan^{-1} B$ implies $A = B$, we can equate the arguments:

$\frac{2\cos x}{\sin^2 x} = 2 \text{cosec} x$

We know that $\text{cosec} x = \frac{1}{\sin x}$. This requires $\sin x \neq 0$, which means $x \neq n\pi$. This condition is already covered by $|\cos x| < 1$.

Substitute $\text{cosec} x = \frac{1}{\sin x}$ into the equation:

$\frac{2\cos x}{\sin^2 x} = 2 \left( \frac{1}{\sin x} \right)$

Divide both sides by 2:

$\frac{\cos x}{\sin^2 x} = \frac{1}{\sin x}$

Multiply both sides by $\sin^2 x$ (since $\sin x \neq 0$, $\sin^2 x \neq 0$):

$\cos x = \frac{\sin^2 x}{\sin x}$

$\cos x = \sin x$

To find the values of $x$ for which $\cos x = \sin x$, we can divide by $\cos x$ (assuming $\cos x \neq 0$). If $\cos x = 0$, then $x = \frac{\pi}{2} + k\pi$, and $\sin x = \pm 1$, so $\cos x \neq \sin x$. Thus, $\cos x \neq 0$.

Dividing by $\cos x$ gives:

$\frac{\sin x}{\cos x} = 1$

$\tan x = 1$

The general solution for $\tan x = 1$ is:

$x = n\pi + \frac{\pi}{4}$, where $n$ is any integer.

We must verify that these solutions satisfy the condition $|\cos x| < 1$.

For $x = n\pi + \frac{\pi}{4}$, $\cos x = \cos(n\pi + \frac{\pi}{4})$.

If $n$ is even ($n=2k$), $\cos x = \cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}$.

If $n$ is odd ($n=2k+1$), $\cos x = \cos(\pi + \frac{\pi}{4}) = -\cos(\frac{\pi}{4}) = -\frac{1}{\sqrt{2}}$.

In both cases, $|\cos x| = \frac{1}{\sqrt{2}}$, which is less than 1. So the condition is satisfied.

Therefore, the general solution to the equation is $\mathbf{x = n\pi + \frac{\pi}{4}}$, where $n$ is an integer.

Often, a specific solution like the principal value is expected. The smallest positive value is when $n=0$, giving $x = \frac{\pi}{4}$.

Question 14. tan-1 $\frac{1 - x}{1 + x}$ = $\frac{1}{2}$ tan-1 x, (x > 0)

Answer:

Given Equation:

$\tan^{-1} \frac{1 - x}{1 + x} = \frac{1}{2} \tan^{-1} x$, with the condition $x > 0$.


To Find:

The value(s) of $x$ that satisfy the equation.


Solution:

We start with the given equation:

$\tan^{-1} \frac{1 - x}{1 + x} = \frac{1}{2} \tan^{-1} x$

We can rewrite the term $\frac{1-x}{1+x}$ using the tangent subtraction formula idea.

Let $1 = \tan A$ and $x = \tan B$. Since $1 = \tan(\frac{\pi}{4})$, we can write:

$\frac{1 - x}{1 + x} = \frac{\tan(\frac{\pi}{4}) - x}{1 + \tan(\frac{\pi}{4}) x}$

We know the identity: $\tan^{-1} A - \tan^{-1} B = \tan^{-1} \left( \frac{A-B}{1+AB} \right)$, which holds if $AB > -1$.

Let $A=1$ and $B=x$. Since $x>0$ is given, $AB = 1 \times x = x > 0 > -1$. Thus, the identity is applicable.

So, $\tan^{-1} \left( \frac{1-x}{1+x} \right) = \tan^{-1} 1 - \tan^{-1} x$.

Substitute this into the LHS of the given equation:

$\tan^{-1} 1 - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$

We know that $\tan^{-1} 1 = \frac{\pi}{4}$.

$\frac{\pi}{4} - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$

Rearrange the terms to solve for $\tan^{-1} x$:

$\frac{\pi}{4} = \tan^{-1} x + \frac{1}{2} \tan^{-1} x$

$\frac{\pi}{4} = \left(1 + \frac{1}{2}\right) \tan^{-1} x$

$\frac{\pi}{4} = \frac{3}{2} \tan^{-1} x$

Multiply both sides by $\frac{2}{3}$:

$\tan^{-1} x = \frac{\pi}{4} \times \frac{2}{3}$

$\tan^{-1} x = \frac{2\pi}{12} = \frac{\pi}{6}$

To find $x$, take the tangent of both sides:

$x = \tan\left(\frac{\pi}{6}\right)$

$x = \frac{1}{\sqrt{3}}$

We must check if this solution satisfies the given condition $x > 0$.

Since $\frac{1}{\sqrt{3}} > 0$, the condition is satisfied.

Therefore, the solution to the equation is $\mathbf{x = \frac{1}{\sqrt{3}}}$.

Question 15. sin (tan–1 x), | x | < 1 is equal to

(A) $\frac{x}{\sqrt{1-x^{2}}}$

(B) $\frac{1}{\sqrt{1-x^{2}}}$

(C) $\frac{1}{\sqrt{1+x^{2}}}$

(D) $\frac{x}{\sqrt{1+x^{2}}}$

Answer:

We need to find the value of the expression $\sin(\tan^{-1} x)$, given $|x| < 1$.

Let $\theta = \tan^{-1} x$. By definition, this means $\tan \theta = x$.

The principal value range for $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We want to find $\sin(\tan^{-1} x) = \sin \theta$.

We can relate $\sin \theta$ to $\tan \theta$ using trigonometric identities or a right triangle.

Method 1: Using identities

We know that $\text{cosec}^2 \theta = 1 + \cot^2 \theta$.

Since $\cot \theta = \frac{1}{\tan \theta} = \frac{1}{x}$ (assuming $x \neq 0$).

$\text{cosec}^2 \theta = 1 + \left(\frac{1}{x}\right)^2 = 1 + \frac{1}{x^2} = \frac{x^2+1}{x^2}$.

Also, $\text{cosec} \theta = \frac{1}{\sin \theta}$, so $\text{cosec}^2 \theta = \frac{1}{\sin^2 \theta}$.

$\frac{1}{\sin^2 \theta} = \frac{x^2+1}{x^2}$.

$\sin^2 \theta = \frac{x^2}{1+x^2}$.

$\sin \theta = \pm \sqrt{\frac{x^2}{1+x^2}} = \pm \frac{|x|}{\sqrt{1+x^2}}$.

Since $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$, $\sin \theta$ has the same sign as $\theta$. Also, $\tan \theta = x$. If $x > 0$, $\theta \in (0, \frac{\pi}{2})$ and $\sin \theta > 0$. If $x < 0$, $\theta \in (-\frac{\pi}{2}, 0)$ and $\sin \theta < 0$. If $x = 0$, $\theta = 0$ and $\sin \theta = 0$.

Therefore, $\sin \theta$ must have the same sign as $x$. So we can write:

$\sin \theta = \frac{x}{\sqrt{1+x^2}}$.


Method 2: Using a right triangle

Let $\theta = \tan^{-1} x$. Then $\tan \theta = x = \frac{x}{1}$.

Assume $x > 0$. Then $\theta$ is in the first quadrant $(0, \frac{\pi}{2})$. We can draw a right triangle where the angle is $\theta$, the opposite side is $x$, and the adjacent side is $1$.

Opposite = $x$

Adjacent = $1$

Hypotenuse = $\sqrt{(\text{Opposite})^2 + (\text{Adjacent})^2} = \sqrt{x^2 + 1^2} = \sqrt{1+x^2}$.

Now, $\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{x}{\sqrt{1+x^2}}$.

If $x < 0$, then $\theta \in (-\frac{\pi}{2}, 0)$. Let $x = -y$ where $y > 0$. Then $\tan \theta = -y$. We can consider a triangle with angle $\phi$ where $\tan \phi = y = \frac{y}{1}$. Then $\sin \phi = \frac{y}{\sqrt{1+y^2}}$. Since $\theta = -\phi$, $\sin \theta = \sin(-\phi) = -\sin \phi = -\frac{y}{\sqrt{1+y^2}} = \frac{-y}{\sqrt{1+(-y)^2}} = \frac{x}{\sqrt{1+x^2}}$.

If $x=0$, $\sin(\tan^{-1} 0) = \sin(0) = 0$, and $\frac{0}{\sqrt{1+0^2}}=0$.

The formula holds for all $x$.

Thus, $\sin(\tan^{-1} x) = \frac{x}{\sqrt{1+x^2}}$.

Comparing this with the given options, the correct option is (D).

Question 16. sin–1 (1 – x) – 2 sin–1 x = $\frac{\pi}{2}$ then x is equal to

(A) 0, $\frac{1}{2}$

(B) 1, $\frac{1}{2}$

(C) 0

(D) $\frac{1}{2}$

Answer:

Given Equation:

$\sin^{-1} (1 - x) - 2 \sin^{-1} x = \frac{\pi}{2}$


To Find:

The value(s) of $x$ that satisfy the equation.


Solution:

First, determine the domain of the equation.

For $\sin^{-1}(1-x)$ to be defined, we must have $-1 \le 1-x \le 1$.

$-1 - 1 \le -x \le 1 - 1 \implies -2 \le -x \le 0 \implies 0 \le x \le 2$.

For $\sin^{-1} x$ to be defined, we must have $-1 \le x \le 1$.

Combining these conditions, the domain for $x$ is $[0, 1]$.


Rearrange the given equation:

$\sin^{-1} (1 - x) = \frac{\pi}{2} + 2 \sin^{-1} x$

Let $\sin^{-1} x = y$. Then $x = \sin y$. Since $x \in [0, 1]$, the range for $y = \sin^{-1} x$ is $[0, \frac{\pi}{2}]$.

The equation becomes:

$\sin^{-1} (1 - \sin y) = \frac{\pi}{2} + 2y$

The range of the inverse sine function $\sin^{-1}$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

Therefore, the value of the left side, $\sin^{-1}(1 - \sin y)$, must lie in $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

This means the right side must also lie in this interval:

$-\frac{\pi}{2} \le \frac{\pi}{2} + 2y \le \frac{\pi}{2}$

Subtract $\frac{\pi}{2}$ from all parts of the inequality:

$-\frac{\pi}{2} - \frac{\pi}{2} \le 2y \le \frac{\pi}{2} - \frac{\pi}{2}$

$-\pi \le 2y \le 0$

Divide by 2:

$-\frac{\pi}{2} \le y \le 0$

We have two conditions for $y$:

1. $y \in [0, \frac{\pi}{2}]$ (from the domain $x \in [0, 1]$)

2. $y \in [-\frac{\pi}{2}, 0]$ (from the range constraint of $\sin^{-1}$)

The only value of $y$ that satisfies both conditions is $y = 0$.

Since $y = \sin^{-1} x$, if $y = 0$, then $\sin^{-1} x = 0$.

$x = \sin(0) = 0$.

We must check if $x=0$ satisfies the original equation:

LHS = $\sin^{-1} (1 - 0) - 2 \sin^{-1} (0)$

LHS = $\sin^{-1} (1) - 2(0)$

LHS = $\frac{\pi}{2} - 0 = \frac{\pi}{2}$.

RHS = $\frac{\pi}{2}$.

Since LHS = RHS, $x = 0$ is the only solution.


Alternate Check (Solving the transformed equation):

From $\sin^{-1} (1 - x) = \frac{\pi}{2} + 2 \sin^{-1} x$, take sine on both sides:

$1 - x = \sin\left(\frac{\pi}{2} + 2 \sin^{-1} x\right)$

$1 - x = \cos(2 \sin^{-1} x)$

Using the identity $\cos(2\theta) = 1 - 2\sin^2\theta$, let $\theta = \sin^{-1} x$. Then $\sin \theta = x$.

$1 - x = 1 - 2(\sin(\sin^{-1} x))^2$

$1 - x = 1 - 2x^2$

$2x^2 - x = 0$

$x(2x - 1) = 0$

This gives potential solutions $x=0$ and $x=\frac{1}{2}$.

Check $x=0$: $\sin^{-1}(1) - 2\sin^{-1}(0) = \frac{\pi}{2} - 0 = \frac{\pi}{2}$. (Valid)

Check $x=1/2$: $\sin^{-1}(1-\frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \sin^{-1}(\frac{1}{2}) - 2\sin^{-1}(\frac{1}{2}) = \frac{\pi}{6} - 2(\frac{\pi}{6}) = \frac{\pi}{6} - \frac{2\pi}{6} = -\frac{\pi}{6}$.

Since $-\frac{\pi}{6} \neq \frac{\pi}{2}$, $x=\frac{1}{2}$ is an extraneous solution introduced by taking the sine.

The only valid solution is $x=0$.

Comparing this with the given options, the correct option is (C).

Question 17. tan-1 $\left( \frac{x}{y} \right)$ - tan-1 $\frac{x-y}{x+y}$ is equal to

(A) $\frac{\pi}{2}$

(B) $\frac{\pi}{3}$

(C) $\frac{\pi}{4}$

(D) $\frac{-3\pi}{4}$

Answer:

Let the given expression be $E$.

$E = \tan^{-1} \left( \frac{x}{y} \right) - \tan^{-1} \frac{x-y}{x+y}$

We use the identity $\tan^{-1} A - \tan^{-1} B = \tan^{-1} \left( \frac{A-B}{1+AB} \right)$, which holds if $AB > -1$.

Let $A = \frac{x}{y}$ and $B = \frac{x-y}{x+y}$.

Calculate the terms needed for the identity:

$A - B = \frac{x}{y} - \frac{x-y}{x+y} = \frac{x(x+y) - y(x-y)}{y(x+y)} = \frac{x^2 + xy - xy + y^2}{y(x+y)} = \frac{x^2 + y^2}{y(x+y)}$

$AB = \left(\frac{x}{y}\right) \left(\frac{x-y}{x+y}\right) = \frac{x(x-y)}{y(x+y)} = \frac{x^2 - xy}{y(x+y)}$

$1 + AB = 1 + \frac{x^2 - xy}{y(x+y)} = \frac{y(x+y) + (x^2 - xy)}{y(x+y)} = \frac{xy + y^2 + x^2 - xy}{y(x+y)} = \frac{x^2 + y^2}{y(x+y)}$

Now compute the fraction inside the resulting $\tan^{-1}$:

$\frac{A-B}{1+AB} = \frac{\frac{x^2 + y^2}{y(x+y)}}{\frac{x^2 + y^2}{y(x+y)}}$

Assuming $x^2 + y^2 \neq 0$ and $y(x+y) \neq 0$, this fraction simplifies to $1$.

Now we need to check the condition $AB > -1$.

$AB > -1 \implies \frac{x^2 - xy}{y(x+y)} > -1$

$\frac{x^2 - xy}{y(x+y)} + 1 > 0$

$\frac{x^2 - xy + y(x+y)}{y(x+y)} > 0$

$\frac{x^2 - xy + xy + y^2}{y(x+y)} > 0$

$\frac{x^2 + y^2}{y(x+y)} > 0$

Since $x^2 + y^2 > 0$ (unless $x=y=0$, which makes the original expression undefined), the condition $AB > -1$ is equivalent to $y(x+y) > 0$.

Case 1: $y(x+y) > 0$ (i.e., $AB > -1$)

In this case, the identity $\tan^{-1} A - \tan^{-1} B = \tan^{-1} \left( \frac{A-B}{1+AB} \right)$ holds.

$E = \tan^{-1}(1)$

The principal value of $\tan^{-1}(1)$ is $\frac{\pi}{4}$.

Case 2: $y(x+y) < 0$ (i.e., $AB < -1$)

In this case, the identity changes based on the signs of $A$ and $B$. If $A = x/y < 0$ and $B = (x-y)/(x+y) > 0$, then $\tan^{-1} A - \tan^{-1} B = -\pi + \tan^{-1} \left( \frac{A-B}{1+AB} \right)$.

This condition ($A<0, B>0, AB<-1$) occurs when $x$ and $y$ have opposite signs and $|x| > |y|$.

In this situation, $E = -\pi + \tan^{-1}(1) = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$.

If $A = x/y > 0$ and $B = (x-y)/(x+y) < 0$, then $\tan^{-1} A - \tan^{-1} B = \pi + \tan^{-1} \left( \frac{A-B}{1+AB} \right)$. However, this condition requires $x,y$ to have the same sign ($A>0$) and $y(x+y) < 0$, which is impossible.

So the possible values for the expression are $\frac{\pi}{4}$ and $-\frac{3\pi}{4}$.

Since no conditions on $x$ and $y$ are given, it is standard practice in such multiple-choice questions to assume the conditions for the simplest form of the identity hold ($AB > -1$). Under this assumption, the result is $\frac{\pi}{4}$.


Alternate Method (Substitution):

Let $\frac{x}{y} = \tan \alpha$. Assume $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

Then $\tan^{-1}\left(\frac{x}{y}\right) = \alpha$.

The second term is $\tan^{-1} \frac{x-y}{x+y}$. Divide numerator and denominator by $y$ (assuming $y \neq 0$):

$\tan^{-1} \frac{\frac{x}{y} - 1}{\frac{x}{y} + 1} = \tan^{-1} \frac{\tan \alpha - 1}{\tan \alpha + 1}$

$= \tan^{-1} \frac{\tan \alpha - \tan(\pi/4)}{1 + \tan \alpha \tan(\pi/4)}$ (since $\tan(\pi/4)=1$)

$= \tan^{-1}(\tan(\alpha - \frac{\pi}{4}))$

The expression becomes $E = \alpha - \tan^{-1}(\tan(\alpha - \frac{\pi}{4}))$.

If $\alpha - \frac{\pi}{4}$ lies in the principal value range $(-\frac{\pi}{2}, \frac{\pi}{2})$, then $\tan^{-1}(\tan(\alpha - \frac{\pi}{4})) = \alpha - \frac{\pi}{4}$.

This happens when $-\frac{\pi}{2} < \alpha - \frac{\pi}{4} < \frac{\pi}{2}$, which means $-\frac{\pi}{4} < \alpha < \frac{3\pi}{4}$.

Since we initially assumed $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$, this condition is satisfied if $\alpha \in (-\frac{\pi}{4}, \frac{\pi}{2})$.

If $\alpha \in (-\frac{\pi}{4}, \frac{\pi}{2})$, then $E = \alpha - (\alpha - \frac{\pi}{4}) = \frac{\pi}{4}$.

This condition $\alpha \in (-\frac{\pi}{4}, \frac{\pi}{2})$ means $\tan \alpha = x/y > \tan(-\pi/4) = -1$. So $x/y > -1$. This corresponds to $y(x+y)>0$.

If $\alpha - \frac{\pi}{4}$ lies outside $(-\frac{\pi}{2}, \frac{\pi}{2})$, specifically if $\alpha \in (-\frac{\pi}{2}, -\frac{\pi}{4}]$, then $\alpha - \frac{\pi}{4} \in (-\frac{3\pi}{4}, -\frac{\pi}{2}]$. In this case, $\tan^{-1}(\tan(\alpha - \frac{\pi}{4})) = (\alpha - \frac{\pi}{4}) + \pi = \alpha + \frac{3\pi}{4}$.

Then $E = \alpha - (\alpha + \frac{3\pi}{4}) = -\frac{3\pi}{4}$.

This condition $\alpha \in (-\frac{\pi}{2}, -\frac{\pi}{4}]$ means $\tan \alpha = x/y \le -1$. This corresponds to $y(x+y)<0$.

Assuming the standard case where $x/y > -1$, the answer is $\frac{\pi}{4}$.

Comparing with the options, the most likely intended answer is $\mathbf{\frac{\pi}{4}}$, which is option (C).